1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erastovalidia [21]
3 years ago
14

A horizontal desk surface measures 1.7 m by 1.0 m. If the Earth's magnetic field has magnitude 0.42 mT and is directed 68° below

the horizontal, what is the magnetic flux through the desk surface?
Physics
1 answer:
AlexFokin [52]3 years ago
3 0

Answer:

The magnetic flux through the desk surface is 6.6\times10^{-4}\ T-m^2.

Explanation:

Given that,

Magnetic field B = 0.42 T

Angle =68°

We need to calculate the magnetic flux

\phi=BA\costheta

Where, B = magnetic field

A = area

Put the value into the formula

\phi=0.42\times10^{-3}\times1.7\times1.0\cos22^{\circ}

\phi=0.42\times10^{-3}\times1.7\times1.0\times0.927

\phi=6.6\times10^{-4}\ T-m^2

Hence, The magnetic flux through the desk surface is 6.6\times10^{-4}\ T-m^2.

You might be interested in
a merry go round has a radius of 8 meters makes 2 revolutions every 2.5 minutes. A. express the angular speed of the merry go ar
pantera1 [17]

Answer:

a).v=83.77x10^{-3} rad/s

b).v=0.8rpm

c).v=0.5865 m/sec.

Explanation:

Given:

r=8m

v=\frac{2rev}{2.5minutes}

a).

2 rev*\frac{2\pirad}{1rev}=4\pi  rad

t=2.5minutes*\frac{60s}{1minute}=150s

The angular speed in radians per seconds is

v=\frac{4\pi}{150s}=83.77x10^{-3} rad/s

b).

v=\frac{2rev}{2.5minute}rpm

v=0.8rpm

c)

Child's distance per revolution

(pi*2r) = 43.988 metres.  

v=(43.988 x 0.0133333) = 0.5865 m/sec.

4 0
3 years ago
What provides the vertical force to balance the force of gravity on the pendulum bob?
Zepler [3.9K]

Answer:

the string and metre rule

Explanation:

7 0
2 years ago
A projectile is launched horizontally from a 20-m tall edifice with a vox of 25 m/s. How long will it take for the projectile to
NISA [10]

Answer:

a) First let's analyze the vertical problem:

When the projectile is on the air, the only vertical force acting on it is the gravitational force, then the acceleration of the projectile is the gravitational acceleration, and we can write this as:

a(t) = -9.8m/s^2

To get the vertical velocity we need to integrate over time to get:

v(t) = (-9.8m/s^2)*t + v0

where v0 is the initial vertical velocity because the object is thrown horizontally, we do not have any initial vertical velocity, then v0 = 0m/s

v(t) = (-9.8m/s^2)*t

To get the vertical position equation we need to integrate over time again, to get:

p(t) = (1/2)*(-9.8m/s^2)*t^2 + p0

where p0 is the initial position, in this case is the height of the edifice, 20m

then:

p(t) = (-4.9m/s^2)*t^2+ 20m

The projectile will hit the ground when p(t) = 0m, then we need to solve:

(-4.9m/s^2)*t^2+ 20m = 0m

20m = (4.9m/s^2)*t^2

√(20m/ (4.9m/s^2)) = t = 2.02 seconds

The correct option is a.

b) The range will be the total horizontal distance traveled by the projectile, as we do not have any horizontal force, we know that the horizontal velocity is 25 m/s constant.

Now we can use the relationship:

distance = speed*time

We know that the projectile travels for 2.02 seconds, then the total distance that it travels is:

distance = 2.02s*25m/s = 50.5m

Here the correct option is a.

c) Again, the horizontal velocity never changes, is 25m/s constantly, then here the correct option is option b. 25m/s

d) Here we need to evaluate the velocity equation in t = 2.02 seconds, this is the velocity of the projectile when it hits the ground.

v(2.02s) =  (-9.8m/s^2)*2.02s = -19.796 m/s

The velocity is negative because it goes down, and it matches with option d, so I suppose that the correct option here is option d (because the sign depends on how you think the problem)

4 0
3 years ago
What could be the possible answer to the question ?<br><br>thankyou ~​
Ganezh [65]

The value of the force, F₀, at equilibrium is equal to the horizontal

component of the tension in string 2.

Response:

  • The value of F₀ so that string 1 remains vertical is approximately <u>0.377·M·g</u>

<h3>How can the equilibrium of forces be used to find the value of F₀?</h3>

Given:

The weight of the rod = The sum of the vertical forces in the strings

Therefore;

M·g = T₂·cos(37°) + T₁

The weight of the rod is at the middle.

Taking moment about point (2) gives;

M·g × L = T₁ × 2·L

Therefore;

T_1 = \mathbf{\dfrac{M \cdot g}{2}}

Which gives;

M \cdot g = \mathbf{T_2 \cdot cos(37 ^{\circ})+ \dfrac{M \cdot g}{2}}

T_2 = \dfrac{M \cdot g - \dfrac{M \cdot g}{2}}{cos(37 ^{\circ})}  = \mathbf{\dfrac{M \cdot g}{2 \cdot cos(37 ^{\circ})}}}

F₀ = T₂·sin(37°)

Which gives;

F_0 = \dfrac{M \cdot g \cdot sin(37 ^{\circ})}{2 \cdot cos(37 ^{\circ})}} = \dfrac{M \cdot g \cdot tan(37 ^{\circ})}{2}  \approx  \mathbf{0.377  \cdot M \cdot g}

  • F₀ ≈ <u>0.377·M·g</u>

<u />

Learn more about equilibrium of forces here:

brainly.com/question/6995192

3 0
2 years ago
Read 2 more answers
You are designing a 108 cm3 right circular cylindrical can whose manufacture will take waste into account. There is no waste in
FinnZ [79.3K]

Explanation:

It is given that,

The volume of a right circular cylindrical, V=108\ cm^3

We know that the volume of the cylinder is given by :

V=\pi r^2 h

108=\pi r^2 h    

h=\dfrac{108}{\pi r^2}............(1)

The upper area is given by :

A=32r^2+2\pi rh

A=32r^2+2\pi r\times \dfrac{108}{\pi r^2}

A=32r^2+\dfrac{216}{r}

For maximum area, differentiate above equation wrt r such that, we get :

\dfrac{dA}{dr}=64r-\dfrac{216}{r^2}

64r-\dfrac{216}{r^2}=0

r^3=\dfrac{216}{64}

r = 1.83 m

Dividing equation (1) with r such that,

\dfrac{h}{r}=\dfrac{108}{\pi r}

\dfrac{h}{r}=\dfrac{108}{\pi 1.83}

\dfrac{h}{r}=59 \pi

Hence, this is the required solution.

8 0
3 years ago
Other questions:
  • Three different planet-star systems, which are far apart from one another, are shown above. The masses of the planets are much l
    15·1 answer
  • Match the correct term with each part of the wave
    7·1 answer
  • Between a piece of paper and a rock, which will fall the fastest and why?
    6·1 answer
  • Which is the best example of Newton's first law of motion
    5·2 answers
  • What is the original source of energy that drives the wind?
    11·1 answer
  • what is the pressure from made from a book with the dimensions of 47 cm *86 cm and a measured force of 900N?
    12·1 answer
  • Calculate pressure when f=50N and a=100m^2​
    11·1 answer
  • What drug is jon abusing
    6·2 answers
  • Which of the following describes the work done by a heat engine?
    15·1 answer
  • A 21.0 kg uniform beam is attached to a wall with a hi.nge while its far end is supported by a cable such that the beam is horiz
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!