Since volume and temperature are constant, this means that pressure and <u>number of moles</u> are <u>directly </u>proportional. the sample with the largest <u>number of moles</u> will have the <u>high </u>pressure.
Since, the ideal gas equation is also called ideal gas law. So, according to ideal gas equations,
PV = nRT
- P is pressure of the sample
- T is temperature
- V is volume
- n is the number of moles
- R is universal gas constant
At constant volume and temperature the equation become ,
P ∝ nR
since, R is also constant. So, conclusion of the final equation is
P ∝ n
The number of moles and pressure of the sample is directly proportion. So, on increasing number of moles in the sample , pressure of the sample also increases.
learn about ideal gas law
brainly.com/question/4147359
#SPJ4
Answer:
increase in temperature of the intrinsic semiconductor
Explanation:
- If the p-side has a higher doping concentration, it implies that number of holes (positive ion) increased which is greater than number of electron (negative ion) in the n-side
- in order to balance the intrinsic concentration, that is to balance the number of holes and electrons which depends on temperature.
- an increase in the temperature of the intrinsic semiconductor (p-side), increases the number of electron but number of holes remains constant.
A balance in the intrinsic concentration helps in tuning to the same radio channel.
Answer:
The basic essential activities performed by an organism to withstand its life are called as life processes. These include nutrition, respiration, circulation, excretion and reproduction. Organisms obtain energy from food to perform these life processes which are essential for survival.
Answer:
d = 43.5 g/cm³
Explanation:
Given data:
Mass of magnesium cube = 217.501 g
Volume of magnesium cube = 5.00 cm³
Density of magnesium cube = ?
Solution:
Formula:
d = m/v
d = density
m = mass
v = volume
by putting values,
d = 217.501 g/ 5.00 cm³
d = 43.5 g/cm³
Hi there! Air and sunlight can definitely be reused. Those are abundant and renewable resources. Therefore, A and D are eliminated. There is a limited amount of water, however, it's impossible to run out of it to the point that there's no more on Earth. C is out. The only answer choice that makes sense is coal, because it's a nonrenewable resource, and it takes millions of years to make more of. It's a fossil fuel, so once we use them up, we can't get anymore during our lives. The answer is B: coal.