Percentage recovery gives us an idea of the amount of pure substance recovered after the chemical reaction. Percentage recovery can be more than 100 % or less than 100 %. Usually, in any experiment performed the weight percentage recovery will be less than 100. Percent recovery values greater than 100 show that the recovered compound is contaminated.
Amount of acetaminophen initially taken = 350 mg
Amount of acetaminophen obtained after recovery =185 mg

= 
= 52.9%
Missing table!! write the elements with the first letter of the symbol with Upper Caps letters!!!
http://www.chemeddl.org/services/moodle/media/QBank/GenChem/Tables/EStandardTable.htm
<span>Ni2+ +Pb(s) → Ni(s) + Pb2+
</span>The potential of the oxidation of Pb(s) --> Pb2+(aq) is 0.126 V
The potential of the reduction go Ni2+(aq) --> Ni(s) is -0.25 V
<span>Add the two together and the potential for the reaction is -0.124 V (NO SPONTANEOUS THE SIGN IS NEGATIVE)
</span><span>au3+ + al(s) → au(s) + al3+Au3+(aq) -> Au(s) +1.5 VAl -> Al3+ +1.66VV= 3.16 (SPONTANEOUS THE SIGN OF THE PONTENTIAL IS POSITIVE)</span><span>Sr2+ + Sn(s) → Sr(s) + Sn2+
</span>
Sr2+(aq) + 2 e– <span> Sr(s) V= -2.89V
</span>Sn -> Sn2+ V= 0.14 V
V= -2.75 V (no spontaneous)
<span>Fe2+ + Cu(s) → Fe(s) + Cu2+
</span>Fe2+(aq) + 2 e–<span> </span><span> Fe(s) V= -0.44 V
</span>Cu -> C2+ V = - 0.337V
V= - 0.777V (no spontaneous)
Answer:
What can liquids do that solids cannot?Liquids will flow and fill up any shape of container. Solids like to hold their shape. In the same way that a large solid holds its shape, the atoms inside of a solid are not allowed to move around too much. Atoms and molecules in liquids and gases are bouncing and floating around, free to move where they want.
What can gases do that solids cannot?The atoms and molecules in gases are much more spread out than in solids or liquids. They vibrate and move freely at high speeds. A gas will fill any container, but if the container is not sealed, the gas will escape. Gas can be compressed much more easily than a liquid or solid.
I hope this helps
Answer:
for given question is 2.79 and
is 0.52
{i- vant hoff’s constant ; Kb- constant ; m molarity }
M = no. of moles of the solute present in one kg of solution
Let the weight of amount of solute be “w” and its molecular mass be “M”
Let the mass of the solvent in the given question be “x”



