Answer:
C.) At room temperature and pressure, because intermolecular interactions are minimized and the particles are relatively far apart.
Explanation:
For gas to behave as an ideal gas there are 2 basic assumptions:
- The intermolecular forces (IMF) are neglectable.
- The volume of the gas is neglectable in comparison with the volume of the container.
<em>In which instance is a gas most likely to behave as an ideal gas?</em>
<em>A.) At low temperatures, because the molecules are always far apart.</em> FALSE. At low temperatures, molecules are closer and IMF are more appreciable.
<em>B.) When the molecules are highly polar, because IMF are more likely.</em> FALSE. When IMF are stronger the gas does not behave as an ideal gas.
<em>C.) At room temperature and pressure, because intermolecular interactions are minimized and the particles are relatively far apart.</em> TRUE.
<em>D.) At high pressures, because the distance between molecules is likely to be small in relation to the size of the molecules.</em> FALSE. At high pressures, the distance between molecules is small and IMF are strong.
What is your question I can answer it
Answer:
A. 0.17 moles
Explanation:
Every 10 grams Glucose to mol = 0.05551 mol
30 moles= 0.166503, round up to .17
Answer:
It is possible she could get one.
Explanation:
To solve this problem we need to convert 98.3 kilometers/hour to miles/hour.
In other words, we <u>convert km to mi</u>, to do so we multiply 98.3 km by a <em>conversion factor</em>, putting the unit we want to have in the numerator, and the unit we want to convert in the denominator:
- 98.3 km *
= 61 mi
Given that the little old lady is doing 61 miles/hour, she could get a speeding ticket.