Let l = Q/L = linear charge density. The semi-circle has a length L which is half the circumference of the circle. So w can relate the radius of the circle to L by
<span>C = 2L = 2*pi*R ---> R = L/pi </span>
<span>Now define the center of the semi-circle as the origin of coordinates and define a as the angle between R and the x-axis. </span>
<span>we can define a small charge dq as </span>
<span>dq = l*ds = l*R*da </span>
<span>So the electric field can be written as: </span>
<span>dE =kdq*(cos(a)/R^2 I_hat + sin(a)/R^2 j_hat) </span>
<span>dE = k*I*R*da*(cos(a)/R^2 I_hat + sin(a)/R^2 j_hat) </span>
<span>E = k*I*(sin(a)/R I_hat - cos(a)/R^2 j_hat) </span>
<span>E = pi*k*Q/L(sin(a)/L I_hat - cos(a)/L j_hat)</span>
Answer:
a) 0 J
b) W = nRTln(Vf/Vi)
c) ΔQ = nRTln(Vf/Vi)
d) ΔQ = W
Explanation:
a) To find the change in the internal energy you use the 1st law of thermodynamics:

Q: heat transfer
W: work done by the gas
The gas is compressed isothermally, then, there is no change in the internal energy and you have
ΔU = 0 J
b) The work is done by the gas, not over the gas.
The work is given by the following formula:

n: moles
R: ideal gas constant
T: constant temperature
Vf: final volume
Vi: initial volume
Vf < Vi, then W < 0 and the work is done on the gas
c) The gas has been compressed. Thus, its temperature increases and heat has been transferred to the gas.
The amount of heat is equal to the work done W
d)

Answer:

Explanation:
Given data
Time t=2.5 minutes=150 seconds
Distance A=1600 ft=487.68 m........east
Distance B=2500 ft=762m ........north
To find
Average velocity
Solution
First we need to find the resultant distance magnitude.To find that we apply Pythagorean theorem to find hypotenuse
So


Answer:
S = V t where S is the horizontal distance traveled
1/2 g t^2 = H where H is the vertical distance traveled
t^2 = 2 H / g
V^2 = S^2 / t^2 = S^2 g / (2 H) combining equations
tan theta = H / S
V^2 = S g / (2 tan theta)
Using S = L cos theta
V^2 = L g cos theta / (2 tan theta)
Giving V in terms of L and theta
Answer:

Explanation:
By energy conservation we know that spring energy is converted into kinetic energy of the block
so we will have

so we will have

now we will have same thing for another mass 4m which moves out with speed 5v
so we have

now from above two equations we have

so we have
