This
can be solved using Dalton's Law of Partial pressures. This law states that the
total pressure exerted by a gas mixture is equal to the sum of the partial
pressure of each gas in the mixture as if it exist alone in a container. In
order to solve, we need the partial pressures of the gases given. Calculations
are as follows:<span>
<span>P = 3.00 atm + 1.80 atm + 0.29 atm + 0.18 atm + 0.10 atm</span></span>
<span><span>P = 5.37 atm</span></span>
<u>Answer: </u>The amount of heat released is 84 calories.
<u>Explanation:
</u>
The equation used to calculate the amount of heat released or absorbed, we use the equation:

where,
Q = heat gained or released = ? Cal
m = mass of the substance = 10g
c = specific heat of aluminium = 0.21 Cal/g ° C
Putting values in above equation, we get:
Q = -84 Calories
Hence, the amount of heat released is 84 calories.
11. I would say physical because the color of the item is changed and the texture and density is changed aswell.
Answer:
Explanation:
Firstly, it should be noted that atomic number (number of protons) determines element. And the element with the atomic number 10 (10 protons) is Neon. Hence, Neon-10 (₁₀Ne) is the answer.
Note that sodium has an atomic number of 11. Also, number of protons is usually equal to the number of electrons in neutral atoms, this is because the total number of positive particles (protons) must be equal to the total number of negative particles (electrons) to give a neutral atom.