You can use Le Chatelier's Principle to describe the equilibrium shift.
Le Chaterlier's Principle states that: "<span>If a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium moves to counteract the change."
Thus, if you heat up the reaction, the equilibrium shift favors the endothermic reaction. If you increase pressure (if gases are involved), the shift favors the reaction that produces less gaseous products (to counteract pressure) and so on.</span>
Answer:
- 178 ºC
Explanation:
The ideal gas law states that :
PV = nRT,
where P is the pressure, V is the volume, n is number of moles , R is the gas constant and T is the absolute temperature.
For the initial conditions :
P₁ V₁ = n₁ R T₁ (1)
and for the final conditions:
P₂V₂= n₂ R T₂ where n₂ = n₁/2 then P₂ V₂ = n₁/2 T₂ (2)
Assuming V₂ = V₁ and dividing (2) by Eqn (1) :
P₂ V₂ = n₁/2 R T₂ / ( n₁ R T₁) then P₂ / P₁ = 1/2 T₂ / T₁
4.10 atm / 25.7 atm = 1/2 T₂ / 298 K ⇒ T₂ = 0.16 x 298 x 2 = 95.1 K
T₂ = 95 - 273 = - 178 º C
This is the decomposition reaction, namely the reaction of photolysis.
2AgCl = 2Ag + Cl₂
The molecular formula shows the exact number of molecules. Therefor, the empirical formula is the simplest formula of the molecular formula
I believe it would be 1.660539040 × 10−24 gram.