Answer:
340.9°k ~ 67.8°C
Explanation:
This is an example of Gay-Lussac's law, which states that the pressure of a given amount of gas held at constant volume is directly proportional to the Kelvin temperature. This means that if the volume increases, so does the temperature, and vice versa.
The equation for this gas law is:
P1/T1 = P2/T2
Known
P1 = 198 kPa
T1 = 27°C + 273.15 = 300°K ← Temp. must be in Kelvins
P2 = 225 kPa
T2 = ?
Solution
Rearrange the equation to isolate T2
Input the known values and solve.
T2 = T1P2/P1
Where:
T2 = 300°K × 225kPa/198kPa = 340.91°K
T2 in °C = 340.91°K − 273.15 = 67.8°C
note: answers were rounded off to one decimal point.
Answer:
the correct answer is CO2 (the last one)
Answer: to late sorry maybe next time
Explanation:
Answer:
1.17 grams of HCl can neutralize 2.7 grams sodium bicarbonate
Explanation:
Step 1: Data given
Mass of sodium bicarbonate = 2.7 grams
Step 2: The balanced equation
HCl + NaHCO3 ⇔ NaCl + H2O + CO2
Step 3: Calculate moles NaHCO3
moles NaHCO3 =2.7 g / 84 g/mol= 0.032 moles
Step 4: Calculate moles HCl
For 1 mol NaHCO3 we need 1 mol HCl
For 0.032 moles NaHCO3 = 0.032 moles HCl
Step 5: Calculate mass HCl
Mass HCl = moles HCl * molar mass HCl
mass HCl = 0.032 * 36.46 g/mol= 1.17 grams
1.17 grams of HCl can neutralize 2.7 grams sodium bicarbonate
Hello!
<span>
You'll need to react
7,5 moles of Sodium with sulfuric acid to produce 3.75 moles of sodium sulfate
</span>
First of all, you need to balance the reaction. The balanced reaction is shown below (ensuring that the Law of Conservation of Mass is met on both sides):
2Na + H₂SO₄ → Na₂SO₄ + H₂
Now, all that you have to do is to use molar equivalences in this reaction applying the coefficients to calculate the moles of Sodium that you'll need:
Have a nice day!