Answer:
the two balls will hit the ground at the same time.
Explanation:
The time of dropping, in the following equation, is related to both the distance travel s and the gravitational acceleration g, which are the same for both ball (if we neglect air resistance), no matter what their mass are.


So the time it takes to drop 2 balls are the same. They will hit the ground at the same time.
Let's use ' t ' to represent half of the time, in hours.
The distance traveled in the first half of the time is (80 t) km.
The distance traveled in the last half of the time is (40 t) km.
The total distance covered is (80t + 40t) = (120t) km.
You said that the total distance covered was 60 km,
so ...
120 t = 60 km
Divide each side by 120 : t (half of the time) = 0.5 hour
Average speed = (total distance covered) / (time to cover the distance)
= (60 km) / (1 hour)
= 60 km/hr .
The formation of new volcanoes and the eruption of some existing ones already.
help me w mine and ill try to help with yours
Speed with which initially car is moving is 21 m/s
Reaction time = 0.50 s
distance traveled in the reaction time d = v t
d = 21 * 0.50 = 10.5 m
deceleration after this time = -10 m/s^2
now the distance traveled by the car after applying bakes



so total distance moved before it stop
d = 22.05 + 10.5 = 32.55 m
so the distance from deer is 35 - 32.55 = 2.45 m
now to find the maximum speed with we can move we will assume that we will just touch the deer when we stop
so our distance after brakes are applied is d = 35 - 10.5 = 24.5 m
again by kinematics



so maximum speed would be 22.1 m/s