1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lapo4ka [179]
2 years ago
6

Professional baseball pitchers deliver pitches that can reach the blazing speed of 100 mph (miles per hour). A local team has dr

afted an up-and-coming, left-handed pitcher who can consistently pitch at 42.24 m/s (94.50 mph).
A. Assuming a pitched ball has a mass of 0.1420 kg and has this speed just before a batter makes contact with it, how much kinetic energy does the ball have?
B. How high would the ball need to be dropped from to attain the same energy (neglect air resistance)?
Physics
1 answer:
Wittaler [7]2 years ago
4 0

Answer:

A. ) K =126. 7 J

B. ) h= 91.1 m.

Explanation:

A)

  • Assuming no air resistance, once released by the pitcher, the speed must keep constant through all the trajectory, so the kinetic energy of the ball can be expressed as follows:

       K = \frac{1}{2}*m*v^{2}  =  \frac{1}{2}*0.142 kg*(42.24m/s)^{2} = 126.7 J (1)

B)

  • Neglecting air resistance, total mechanical energy must be the same at any point, so, if we choose the ground level as the zero reference level for the gravitational potential energy, and assuming that the ball attains this kinetic energy just before striking ground, this value must be equal to the gravitational potential energy just before be dropped, so we can write the following equality:

        U_{o} = K_{f} = 126. 7 J (2)

        ⇒ m*g*h = 126. 7 J

  • Solving for h, we get:

       h = \frac{K_{f}}{m*g} = \frac{126.7J}{0.1420kg*9.8m/s2} = 91.1 m (3)

You might be interested in
A cable is 100-m long and has a cross-sectional area of 1.0 mm2. A 1000-N force is applied to stretch the cable. Young's modulus
Blizzard [7]

Answer:

1 m

Explanation:

L = 100 m

A = 1 mm^2 = 1 x 10^-6 m^2

Y = 1 x 10^11 N/m^2

F = 1000 N

Let the cable stretch be ΔL.

By the formula of Young's modulus

Y=\frac{F\times L}{A\times\Delta L}

\Delta L=\frac{F\times L}{A\times\Y}

\Delta L=\frac{1000\times 100}{10^{-6}\times10^{11}}

ΔL = 1 m

Thus, the cable stretches by 1 m.

4 0
2 years ago
Jana is observing a young autistic boy in a preschool classroom. Her job is to note each time the boy gets up from his chair wit
svp [43]
The answer is tallying
3 0
3 years ago
Suppose that an object is moving along a vertical line. Its vertical position is given by the equation L(t) = 2t3 + t2-5t + 1, w
Tatiana [17]

Answer:

The average velocity is

266\frac{m}{s},274\frac{m}{s} and 117\frac{m}{s} respectively.

Explanation:

Let's start writing the vertical position equation :

L(t)=2t^{3}+t^{2}-5t+1

Where distance is measured in meters and time in seconds.

The average velocity is equal to the position variation divided by the time variation.

V_{avg}=\frac{Displacement}{Time} = Δx / Δt = \frac{x2-x1}{t2-t1}

For the first time interval :

t1 = 5 s → t2 = 8 s

The time variation is :

t2-t1=8s-5s=3s

For the position variation we use the vertical position equation :

x2=L(8s)=2.(8)^{3}+8^{2}-5.8+1=1049m

x1=L(5s)=2.(5)^{3}+5^{2}-5.5+1=251m

Δx = x2 - x1 = 1049 m - 251 m = 798 m

The average velocity for this interval is

\frac{798m}{3s}=266\frac{m}{s}

For the second time interval :

t1 = 4 s → t2 = 9 s

x2=L(9s)=2.(9)^{3}+9^{2}-5.9+1=1495m

x1=L(4s)=2.(4)^{3}+4^{2}-5.4+1=125m

Δx = x2 - x1 = 1495 m - 125 m = 1370 m

And the time variation is t2 - t1 = 9 s - 4 s = 5 s

The average velocity for this interval is :

\frac{1370m}{5s}=274\frac{m}{s}

Finally for the third time interval :

t1 = 1 s → t2 = 7 s

The time variation is t2 - t1 = 7 s - 1 s = 6 s

Then

x2=L(7s)=2.(7)^{3}+7^{2}-5.7+1=701m

x1=L(1s)=2.(1)^{3}+1^{2}-5.1+1=-1m

The position variation is x2 - x1 = 701 m - (-1 m) = 702 m

The average velocity is

\frac{702m}{6s}=117\frac{m}{s}

5 0
3 years ago
a cart's initial velocity is +3.0 meters per second. What is its final velocity after accelerating at a rate of 1.5m/s2 for 8.0
Andreas93 [3]

The final velocity is +15.0 m/s

Explanation:

The motion of the cart is a uniformly accelerated motion (=at constant acceleration), therefore we can use the following suvat equation:

v=u+at

where

v is the velocity at time t

u is the initial velocity

a is the acceleration

t is the time

For the cart in this problem, we have:

u = +3.0 m/s (initial velocity)

a=1.5 m/s^2 (acceleration)

t = 8.0 s (time)

Substituting, we find the final velocity:

v=3.0+(1.5)(8.0)=+15.0 m/s

Learn more about accelerated motion:

brainly.com/question/9527152

brainly.com/question/11181826

brainly.com/question/2506873

brainly.com/question/2562700

#LearnwithBrainly

4 0
3 years ago
If then hypothesis for egg drop
Marina86 [1]
If I drop my egg unprotected, then it will break.
6 0
2 years ago
Other questions:
  • Which layer of the Sun appears pinkish-red during a solar eclipse?
    5·2 answers
  • A weightlifter uses a force of 356 N to lift a set of weights 2.2 m off the ground. How much work did the weightlifter do? Answe
    6·1 answer
  • Billy Bob and Bob Bob are standing on a plank that is 9.0 m long and has mass 100 kg, that has supports at the 2 m and 5 m marks
    10·1 answer
  • What are the concepts of dynamically continuous innovation and discontinuous innovation? Can you share examples to illustrate th
    7·1 answer
  • An experiment measures the growth of crystals in a liquid solution abroad the space shuttle a collection of bottles has the liqu
    13·1 answer
  • Most of the stars in the milky way will end their lives as
    15·1 answer
  • When do we experience conservation of energy
    7·1 answer
  • Suppose a mad scientist went back in time to the beginning of the solar system and caused the newly formed Mars and Venus to swi
    6·1 answer
  • The Sun is divided into three regions.<br> True оr False?
    10·2 answers
  • Danny Diver weighs 500 N and steps off a diving board 10 m above the water. Danny hits the water with kinetic energy of
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!