Answer:
160 kg
12 m/s
Explanation:
= Mass of first car = 120 kg
= Mass of second car
= Initial Velocity of first car = 14 m/s
= Initial Velocity of second car = 0 m/s
= Final Velocity of first car = -2 m/s
= Final Velocity of second car
For perfectly elastic collision

Applying in the next equation


Mass of second car = 160 kg
Velocity of second car = 12 m/s
If the net force on a block is zero, the block will move at constant velocity
Explanation:
We can answer this question by applying Newton's second law of motion, which states that the net force on an object is equal to the product between its mass and its acceleration:
(1)
where
is the net force on the object
m is its mass
a is its acceleration
In this problem, we have a block, and the net force on it is zero:

According to eq.(1), this also implies that

So, the acceleration of the block is zero.
However, acceleration is the rate of change of velocity of a body:

where
is the change in velocity in a time of
. Since the acceleration is zero, this means that
, and therefore the velocity of the object is constant.
Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly
Answer:

Explanation:
We are given that
Mass of spherical shell,
=1900 kg
Mass=
Radius of shell=r=5 m
Distance between two masses=r=5.01 m
Because distance measure from center .
Gravitational force


Using the formula


Hence,the gravitational force =
Answer:
8 V
Explanation:
There is no resistance between the left legs of voltmeters 2 and 3 and there is no resistance between the right legs of voltmeters 2 and 3. They are measuring the same voltage.