D. The final substance in Beaker A is a mixture and in Beaker B is a pure substance.
1. 5 ethyl, 2 methyl octane
2. 1 ethyl, 2 methyl cyclopentane
3. 3,3,5,5- tetrafluoro heptane
4. 3,4-dimethyl hexene
5. 3,4-dimethyl cyclobutene
6. 3,5 diisopropyl cyclohexene
7. 3,3,4 trimethyl pentyne
8. 2,6 dibromo phenol
keep in mind that between 4-7, there could be #1 in front of the main name. for example with #4: 3,4-dimethyl-1- hexene. this honestly depends on the professor how he/she likes it. It is not necessary because if the number is not specified, it is assumed is #1
Answer:
0.00335 moles
Explanation:
From the question, Using
PV = nRT................... Equation 1
Where P = pressure, V = Volume, n = number of moles of argon gas, R = Molar gas constant, T = Temperature.
make n the subject of the equation
n = PV/RT............... Equation 2
Given: P = 1 atm (standard pressure), T = 273 K (standard temperature), V = 75 mL = 0.075 dm³
Constant: R = 0.082 atm·dm³/K·mol
Substitute into equation 2
n = (1×0.075)/(273×0.082)
n = 0.075/22.386
n = 0.00335 moles