I am pretty sure the answer is . But I might be wrong.
Answer:
36.55kJ/mol
Explanation:
The heat of solution is the change in heat when the KNO3 dissolves in water:
KNO3(aq) → K+(aq) + NO3-(aq)
As the temperature decreases, the reaction is endothermic and the molar heat of solution is positive.
To solve the molar heat we need to find the moles of KNO3 dissolved and the change in heat as follows:
<em>Moles KNO3 -Molar mass: 101.1032g/mol-</em>
10.6g * (1mol/101.1032g) = 0.1048 moles KNO3
<em>Change in heat:</em>
q = m*S*ΔT
<em>Where q is heat in J,</em>
<em>m is the mass of the solution: 10.6g + 251.0g = 261.6g</em>
S is specififc heat of solution: 4.184J/g°C -Assuming is the same than pure water-
And ΔT is change in temperature: 25°C - 21.5°C = 3.5°C
q = 261.6g*4.184J/g°C*3.5°C
q = 3830.87J
<em>Molar heat of solution:</em>
3830.87J/0.1048 moles KNO3 =
36554J/mol =
<h3>36.55kJ/mol</h3>
<em />
Answer:
Hydrogen bonding
Explanation:
As a rule of thumb, "likes dissolve like", meaning polar solutes dissolve in polar solvents and nonpolar solutes in nonpolar solvents. In this case, water is polar (<em>dipolar moment</em> = 1.85 Debye) dissolves methanol which is also polar (<em>dipolar moment</em> = 1.69 Debye). Besides being dipoles, both molecules have atoms of Hydrogen with a covalent bond to more electronegative atoms of Oxygen. When this happens, stronger dipole-dipole interactions appear known as Hydrogen bonding. There is an electrostatic attraction between H (positive charge density) and O (negative charge density).
Uhhh i think it might be c blue because it has more volume and less amount of matter
Answer:
90% of people marry there 7th grade love. since u have read this, u will be told good news tonight. if u don't pass this on nine comments your worst week starts now this isn't fake. apparently if u copy and paste this on ten comments in the next ten minutes you will have the best day of your life tomorrow. you will either get kissed or asked out in the next 53 minutes someone will say i love you
Explanation: