Explanation:
Work done is given by the product of force and displacement.
Case 1,
1. A boy lifts a 2-newton box 0.8 meters.
W = 2 N × 0.8 m = 1.6 J
2. A boy lifts a 5-newton box 0.8 meters.
W = 5 N × 0.8 m = 4 J
3. A boy lifts a 8-newton box 0.2 meters.
W = 8 N × 0.2 m = 1.6 J
4. A boy lifts a 10-newton box 0.2 meters.
W = 10 N × 0.2 m = 2 J
Out of the four options, in option (2) ''A boy lifts a 5-newton box 0.8 meters'', the work done is 4 J. Hence, the greatest work done is 4 J.
We would have to search at least 5,000,000,000 (5 billion) stars before we would expect to hear a signal.
To find out the number of stars that we will need to search to find a signal, we need to use the following formula:
- total of stars/civilizations
- 500,000,000,000 (500 billion) stars / 100 civilization = 5,000,000,000 (5 billion)
This shows it is expected to find a civilization every 5 billion stars, and therefore it is necessary to search at least 5 billion stars before hearing a signal from any civilization.
Note: This question is incomplete; here is the complete question.
On average, how many stars would we have to search before we would expect to hear a signal? Assume there are 500 billion stars in the galaxy.
Assuming 100 civilizations existed.
Learn more about stars in: brainly.com/question/2166533
<u>Answer:</u> Below 12m of depth, the submarine has to submerge so that it would not be swayed by surface waves
<u>Explanation:</u>
To avoid the surface waves, a submarine has to submerge below the wave base. It is the position below which the motion of the waves is negligible.
This wave base is equal to half of the wavelength. The equation becomes:
Wave base = 
We are given:
Wavelength = 24 m
Putting values in above equation, we get:
Wave base = 
Hence, below 12m of depth, the submarine has to submerge so that it would not be swayed by surface waves
Answer:the one with the smaller radius has the highest centripetal force
Explanation:
The last equation gives you the tension in the string on the right:
