Answer:
See Explanation
Explanation:
Elements in group fourteen are mostly known to form compounds in which there are four electron domains leading to a tetrahedral electron domain geometry.
However, the presence of lone pairs affects the shape of the molecule. SnCl3− has four electron domains, three of them are bond pairs while one is a lone pair. The shape of the molecule is based on a tetrahedron, however the observed geometry is trigonal pyramidal due to the presence of the lone pair. Its bond angle is now less than the predicted 109 degrees.
Answer:
The molarity of the HCl solution should be 4.04 M
Explanation:
<u>Step 1:</u> Data given
volume of HCl solution = 10.00 mL = 0.01 L
volume of a 1.6 M NaOH solution = 25.24 mL = 0.02524 L
<u>Step 2:</u> The balanced equation
HCl + NaOH → NaCL + H2O
Step 3: Calculate molarity of HCl
n1*C1*V1 = n2*C2*V2
Since the mole ratio for HCl and NaOH is 1:1 we can just write:
C1*V1 =C2*V2
⇒ with C1 : the molarity of HCl = TO BE DETERMINED
⇒ with V1 = the volume og HCl = 10 mL = 0.01 L
⇒ with C2 = The molarity of NaOH = 1.6 M
⇒ with V2 = volume of NaOH = 25.24 mL = 0.02524 L
C1 * 0.01 = 1.6 * 0.02524
C1 = (1.6*0.02524)/0.01
C1 = 4.04M
The molarity of the HCl solution should be 4.04 M
The answer is heat.
To use a glue gun, it has to use heat to heat up so that it can melt the glue.
Answer:
E 1: cyclohexene
Explanation:
This reaction is an example of the dehydration of cyclic alcohols. The reaction proceeds in the following steps;
1) The first step of the process is the protonation of the cyclohexanol by the acid. This now yields H2O^+ attached to the cyclohexane ring.
2) the water molecule, which a good leaving group now leaves yielding a carbocation. This now leaves a cyclohexane carbocation which is highly reactive.
3) A water molecule now abstracts a proton from the carbon adjacent to the carbocation leading to the formation of cyclohexene and the regeneration of the acid catalyst. This is an E1 mechanism because it proceeds via a carbocation intermediate and not a concerted transition state, hence the answer.
I think the correct answer from the choices listed above is option B. Polymerization is the process of forming c<span>omplex molecules by the bond formation between monomers. There are two types of this process which are the addition and condensation polymerization.</span>