Answer:
pH is a measure of hydrogen ion concentration, a measure of the acidity or alkalinity of a solution. The pH scale usually ranges from 0 to 14. Aqueous solutions at 25°C with a pH less than 7 are acidic, while those with a pH greater than 7 are basic or alkaline. A pH level of 7.0 at 25°C is defined as "neutral" because the concentration of H3O+ equals the concentration of OH− in pure water. On the other hand, electrical conductivity is a non-specific measurement of the concentration of both positively and negatively charged ions within a sample. So the short answer to the question is as follows, the presence of any hydrogen ions present in a substance will impact the pH level and most probably influence conductivity levels. However, hydrogen ions make up only a small part of the ion concentration measured by a conductivity meter.
The crude oil is heated in a process of fractional distillation (note: you can research this online if you require more detail) and this process causes different hydrocarbons to condense at different heights up the distillation column. They will therefore run down the side of the column and into different areas depending on their boiling point.
The question is incomplete. The complete question is:
At 25◦C and atmospheric pressure the volume change of mixing of binary liquid mixtures of species 1 and 2 is given by the equation:
ΔV = x1x2(45x1 + 25x2)
Where ΔV is in cm3-mol-1. At these conditions, the molar volumes of pure liquid 1 and 2 are V1= 110 and V2= 90 cm3-mol-1. Determine the partial molar volumes 1VE and 2VE in a mixture containing 40 mole percent of specie 1.
Answer:
1VE = 117.92 cm³.mol⁻¹, 2VE = 97.92 cm³.mol⁻¹
Explanation:
In the equation given, x represents the molar fraction of each substance, thus x1 = 0.4 and x2 = 0.6. Because of the mixture, the molar partial volume of each substance will change by a same amount, which will be:
ΔV = 0.4*0.6(45*0.4+ 25*0.6)
ΔV = 7.92 cm³.mol⁻¹
1VE - V1 = 7.92
1VE = 7.92 + 110
1VE = 117.92 cm³.mol⁻¹
2VE - V2 = 7.92
2VE = 7.92 + 90
2VE = 97.92 cm³.mol⁻¹
Answer:
3 mol AlCl₃.
Explanation:
Hello!
In this case, according to the specified reactants and products, it is possible to set up the following balanced chemical reaction:

Whereas we evidence the 1:3 mole ratio between aluminum nitrate and sodium chloride; thus, since different moles were reacting, we need to identify the limiting reactant by computing the moles of AlCl₃ produced by each reactant as follows:

Thus, we infer that NaCl is the limiting reactant as it produces the fewest moles of AlCl₃; consequently the produced amount of this product is 3 mol.
Best regards!