To solve this problem it is necessary to apply the concepts related to the Centrifugal Force and the Gravitational Force. Since there is balance on the body these two Forces will be equal, mathematically they can be expressed as


Where,
m = Mass
G =Gravitational Universal Constant
M = Mass of the Planet
r = Distance/Radius
Re-arrange to find the velocity we have,

At the same time we know that the period is equivalent in terms of the linear velocity to,


If our values are that the radius of mars is 3400 km and the distance above the planet is 100km more, i.e, 3500km we have,



Replacing we have,



Therefore the correct answer is C.
To find out the kinetic friction, using the coefficient friction formula.
What is kinetic friction?
A force that acts between moving surfaces is called "kinetic friction." A force acting in opposition to the direction of a moving body on the surface is felt. The two materials' kinetic friction coefficients will determine how much force is applied.
What is coefficient friction?
A measure of the degree of friction between two surfaces is the coefficient of friction. A coefficient of friction is determined by calculating the resistance to motion at the intersection of two surfaces made of the same or different materials.
UK
U-coefficient of friction
K-Kinetic friction
Using UK
450+370-f=m*o
f=820=UK*260*9.8
UK=2.548
820/2.548
UK= 321.8210361
Therefore the coefficient of kinetic friction is 321.8210361
Learn more about Kinetic friction from the given link.
brainly.com/question/14111192
#SPJ4
Answer:
So airplane will be 1324.9453 m apart after 2.9 hour
Explanation:
So if we draw the vectors of a 2d graph we see that the difference in angles is = 83 - 44.3 = 
Distance traveled by first plane = 730×2.9 = 2117 m
And distance traveled by second plane = 590×2.9 = 1711 m
We represent these distances as two sides of the triangle, and the distance between the planes as the side opposing the angle 38.7.
Using the law of cosine,
representing the distance between the planes, we see that:

d = 1324.9453 m
An alluvial fan is a wide, sloping deposit of sediment formed where a stream leaves a mountain range. Make sure not to confuse it with a delta. A delta is a<span> landform made of </span>sediment<span> that is </span>deposited<span> where a river flows into an ocean or lake. Hope this helped!</span>
We use the formula,
m = V\rho
Here, m is the mass, V is the volume and
density
Also

Here l is length, w is width and h is height.
(a) The volume of the room,

The volume of the room in cubic feet,

(b) Now the mass of the air in room,
.
Therefore, the weight of the air in room,
.
The weight of air in the room in pounds,
