When spring times comes around you ever be like, "k." If you feel like that every year during spring then there you go
Answer:
True
The escape speed from the Moon is much smaller than from Earth.
Explanation:
The escape speed is defined as:
(1)
Where G is the gravitational constant, M is the mass and r is the radius.
The mass of the Earth is
and its radius is 
Then, replacing those values in equation 1 it is gotten.
For the case of the Moon:
Hence, the escape speed from the Moon is much smaller than from Earth.
Since it has a smaller mass and smaller radius compared to that from the Earth.
The evidence that the universe is expanding comes with something called the red shift<span> of light. Light travels to Earth from other galaxies. As the light from that galaxy gets closer to Earth, the distance between Earth and the galaxy increases, which causes the wavelength of that light to get longer.</span>
Answer
given,
length of the swing = 26.2 m
inclined at an angle = 28°
let, the initial height of the Tarzan be h
h = L (1 - cos θ)
a) initial velocity v₁ = 0 m/s
final velocity of Tarzan = v_f
law of conservation of energy
PE_i + KE_i = PE_f + KE_f






= 7.75 m/s
the speed tarzan at the bottom of the swing
v_f = 7.75 m/s
b)initial speed of the = 3 m/s






v_f= 11.29 m/s
Answer:
W = 55.12 J
Explanation:
Given,
Natural length = 6 in
Force = 4 lb, stretched length = 8.4 in
We know,
F = k x
k is spring constant
4 = k (8.4-6)
k = 1.67 lb/in
Work done to stretch the spring to 10.1 in.

![W = \dfrac{k}{2}[x^2]_6^{10.1}](https://tex.z-dn.net/?f=W%20%3D%20%5Cdfrac%7Bk%7D%7B2%7D%5Bx%5E2%5D_6%5E%7B10.1%7D)

W = 55.12 J
Work done in stretching spring from 6 in to 10.1 in is equal to 55.12 J.