Answer:

☯ Question :
- How fast is a wave travelling if it has a wavelength of 7 meters and a frequency of 11 Hz?
☯ 
☥ Given :
- Wavelength ( λ ) = 7 meters
- Frequency ( f ) = 11 Hz
☥ To find :
☄ We know ,

where ,
- v = speed of sound
- f = frequency
- λ = wavelength
Now, substitute the values and solve for v.
➺ 
➺ 
-------------------------------------------------------------------
✑ Additional Info :
- Frequency : The number of complete vibrations made by a particle of a body in one second is called it's frequency. It is denoted by the letter f . The SI unit of frequency is hertz ( Hz ).
- Wavelength : The distance between two consecutive compressions or rarefactions of a sound wave is called wavelength of that wave. It is denoted by λ ( lambda ) and it's SI unit is m.
- Speed of a sound wave : The distance covered by a sound wave in one second is called speed of sound wave. It depends on the product of wavelength and frequency of the wave.
Hope I helped!
Have a wonderful time! ツ
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
Heat supplied to the gold will raise the temperature of the gold from 20 degree Celsius to 90 degree Celsius.
Mass of the gold (m) = 0.072 kg
Temperature change (ΔT) = 90 - 20 = 70 degree Celsius
Specific heat capacity of the gold (c) = 136 J/kg C
Heat supplied = m × c × ΔT
Heat supplied = 0.072 × 136 × 70
Heat supplied = 685.44 Joules
Hence, the heat supplied to the gold to raise the temperature from 20 degree Celsius to 90 degree Celsius = 685.44 Joules
Answer
given,
mass of copper rod = 1 kg
horizontal rails = 1 m
Current (I) = 50 A
coefficient of static friction = 0.6
magnetic force acting on a current carrying wire is
F = B i L
Rod is not necessarily vertical


the normal reaction N = mg-F y
static friction f = μ_s (mg-F y )
horizontal acceleration is zero


B_w = B sinθ
B_d = B cosθ
iLB cosθ= μ_s (mg- iLB sinθ)





B = 0.1 T
Answer:
The answer is A. C and O..
Answer:
Large above ground mausoleums were not common in the elite Shang burials.
Explanation:
Large, above the ground mausoleums were not common so the answer is option B.