(a) The plane makes 4.3 revolutions per minute, so it makes a single revolution in
(1 min) / (4.3 rev) ≈ 0.2326 min ≈ 13.95 s ≈ 14 s
(b) The plane completes 1 revolution in about 14 s, so that in this time it travels a distance equal to the circumference of the path:
(2<em>π</em> (23 m)) / (14 s) ≈ 10.3568 m/s ≈ 10 m/s
(c) The plane accelerates toward the center of the path with magnitude
<em>a</em> = (10 m/s)² / (23 m) ≈ 4.6636 m/s² ≈ 4.7 m/s²
(d) By Newton's second law, the tension in the line is
<em>F</em> = (1.3 kg) (4.7 m/s²) ≈ 6.0627 N ≈ 6.1 N
They traveling at -0.37/ms^
Answer:
The smallest separation distance between the speakers is 0.71 m.
Explanation:
Given that,
Two speakers, one directly behind the other, are each generating a 240-Hz sound wave, f = 240 Hz
Let the speed of sound is 343 m/s in air. The speed of sound is given by the formula as :

To produce destructive interference at a listener standing in front of them,

So, the smallest separation distance between the speakers is 0.71 m. Hence, this is the required solution.