Answer:
F = 39.36 N
Explanation:
given,
initial speed, u = 38 m/s
final speed, v = 0 m/s
mass of ball = 0.145 Kg
time, t = 0.14 s
Force = ?
using impulse formula
J = change in momentum
J = F x t
m(v - u) = F x t
0.145 x (0 - (-38)) = F x 0.14
F x 0.14 = 5.51
F = 39.36 N
force exerted by the ball is equal to 39.36 N.
Answer:
a. 16 s b. -1.866 kJ
Explanation:
a. Since the initial rotational speed ω₀= 3313 rev/min = 3313/60 × 2π rad/s = 346.94 rad/s. Its rotational speed becomes ω₁ = 0.75ω₀ in time t = 4 s.
We find it rotational acceleration using α = (ω₁ - ω₀)/t = (0.75ω₀ - ω₀)/t = ω₀(0.75 - 1)/t = -0.25ω₀/t = (-0.25 × 346.94 rad/s)/4 s = -21.68 rad/s².
Since the turntable stops at ω = 0, the time it takes to stop is gotten from
ω = ω₀ + αt and t = (ω - ω₀)/α = (0 - 346.94 rad/s)/-21.68 rad/s² = (-346.94/-21.68) s = 16 s.
So it takes the turntable 16 s to stop.
b. The workdone by the turntable to stop W equals its rotational kinetic energy change.
So, W = 1/2Iω² - 1/2Iω₀² = 1/2 × 0.031 kgm² × 0² - 1/2 × 0.031 kgm² × (346.94 rad/s)² = 0 - 1865.7 J = -1865.7 J = -1.8657 kJ ≅ -1.866 kJ
C. The bowling ball and the bicycle
p = mv
P of bike = 12x5 = 60
P of rock = 2x20 = 40
P of ball = 5 x 10 = 60
Answer:
12 m/s
Explanation:
divide distance over time
72/6 = 12
Answer:
Gravity: downwards
Air drag and air-pressure on the inner surface of the the parachute: Upwards
Explanation:
- If a sky-diver is in the final stages of his descend with open parachute such that the wind is calm and it does not blows him laterally.
- In such a condition the air resistance in the form of drag and the pressure force due to the air captured in the parachute are acting in the upward direction which balance the force of gravity on the body. But this situation may occur momentarily and then again the diver must begin to slowly descend.