If it's a distance graph, then it's a constant speed.
I believe that the answer to this would be B
Hope this helped
<u>Thermal energy</u><u> from the room-temperature water will continuously flow to the boiling water.</u>
- The second law states, in a straightforward manner, that heat cannot naturally go "uphill."
- When a pan of boiling water and a pan of ice are in touch, the hot water cools and the ice melts and warms up.
<h3>
THE FIRST LAW OF THERMODYNAMICS</h3>
- Adiabatic Process - is a procedure that is carried out without the system's heat content changing.
- Water is heated to a temperature of 1000C during the boiling process, making it an isothermal process. As steam, the excess heat leaves the system.
Learn more about first law of thermodynamics brainly.com/question/3808473
#SPJ4
Answer:
P_(pump) = 98,000 Pa
Explanation:
We are given;
h2 = 30m
h1 = 20m
Density; ρ = 1000 kg/m³
First of all, we know that the sum of the pressures in the tank and the pump is equal to that of the Nozzle,
Thus, it can be expressed as;
P_(tank)+ P_(pump) = P_(nozzle)
Now, the pressure would be given by;
P = ρgh
So,
ρgh_1 + P_(pump) = ρgh_2
Thus,
P_(pump) = ρg(h_2 - h_1)
Plugging in the relevant values to obtain;
P_(pump) = 1000•9.8(30 - 20)
P_(pump) = 98,000 Pa
Answer:
Assuming there is no heat loss to the surrounding.
Heat lost by iron equals heat gained by water.
0.2(450)(50-x)=0.2(4200)(x-30)
x=31.94 °C
Explanation: