The sound mixer will need to increase the amplitude of the sound wave produced by the singer which will increase the loudness of the sound.
<h3>Amplitude of sound wave</h3>
The amplitude of a sound wave is the maximum vertical displacement of the sound wave.
The sound mixer will need to increase the amplitude of the sound wave produced by the singer.
The increase in the amplitude of the sound wave produced by the lower tune singer will result in increased loudness of the sound.
Thus, the sound mixer will need to increase the amplitude of the sound wave produced by the singer which will increase the loudness of the sound.
Learn more about sound waves here: brainly.com/question/1199084
<span>The velocity would be 54.2 m/s
We would use the equation 1/2mv^2top+mghtop = 1/2mv^2bottom+mghbottom where m is the mass of the bobsled(which can be ignored), vtop/bottom is the velocity of the bobsled at the top or bottom, g is gravity, and htop/bottom is the height of the bobsled at the top or bottom of the hill. Since the velocity of the bobsled at the top of the hill and height at the bottom of the hill are zero, 1/2mv^2top and mghbottom will equal zero. The equation will be mghtop=1/2mv^2bottom. Thus we would solve for v.</span>
Average speed=total distance traveled/time. Total distance=the sum of the two short distances=79*2+77*3=389 km. Total time used to travel is 2+3=5 hr. Average speed is 389/5=77.8 km/hr.