Torch body if I’m wrong I’m really sorry that’s what I got
Answer:
a. Heat removal rate will increase
b. Heat removal rate will decrease
Explanation:
Given that
One end of rod is connected to the furnace and rod is long.So this rod can be treated as infinite long fin.
We know that heat transfer in fin given as follows

We know that area

Now when diameter will triples then :





So the new heat transfer will increase by 3 times.
Now when copper rod will replace by aluminium rod :
As we know that thermal conductivity(K) of Aluminium is low as compare to Copper .It means that heat transfer will decreases.
Answer:
The answer is "583.042533 MPa".
Explanation:
Solve the following for the real state strain 1:

Solve the following for the real stress and pressure for the stable.
![K=\frac{\sigma_{r1}}{[\In \frac{I_{il}}{I_{01}}]^n}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5Csigma_%7Br1%7D%7D%7B%5B%5CIn%20%5Cfrac%7BI_%7Bil%7D%7D%7BI_%7B01%7D%7D%5D%5En%7D)
Solve the following for the true state stress and stress2.

![=\frac{\sigma_{r1}}{[\In \frac{I_{il}}{I_{01}}]^n} \times [\In \frac{I_{i2}}{I_{02}}]^n\\\\=\frac{399 \ MPa}{[In \frac{54.4}{47.7}]^{0.2}} \times [In \frac{57.8}{47.7}]^{0.2}\\\\ =\frac{399 \ MPa}{[ In (1.14046122)]^{0.2}} \times [In (1.21174004)]^{0.2}\\\\ =\frac{399 \ MPa}{[ In (1.02663509)]} \times [In 1.03915873]\\\\=\frac{399 \ MPa}{0.0114161042} \times 0.0166818905\\\\= 399 \ MPa \times 1.46125948\\\\=583.042533\ \ MPa](https://tex.z-dn.net/?f=%3D%5Cfrac%7B%5Csigma_%7Br1%7D%7D%7B%5B%5CIn%20%5Cfrac%7BI_%7Bil%7D%7D%7BI_%7B01%7D%7D%5D%5En%7D%20%5Ctimes%20%5B%5CIn%20%5Cfrac%7BI_%7Bi2%7D%7D%7BI_%7B02%7D%7D%5D%5En%5C%5C%5C%5C%3D%5Cfrac%7B399%20%5C%20MPa%7D%7B%5BIn%20%5Cfrac%7B54.4%7D%7B47.7%7D%5D%5E%7B0.2%7D%7D%20%5Ctimes%20%5BIn%20%5Cfrac%7B57.8%7D%7B47.7%7D%5D%5E%7B0.2%7D%5C%5C%5C%5C%20%3D%5Cfrac%7B399%20%5C%20MPa%7D%7B%5B%20In%20%281.14046122%29%5D%5E%7B0.2%7D%7D%20%5Ctimes%20%5BIn%20%281.21174004%29%5D%5E%7B0.2%7D%5C%5C%5C%5C%20%3D%5Cfrac%7B399%20%5C%20MPa%7D%7B%5B%20In%20%281.02663509%29%5D%7D%20%5Ctimes%20%5BIn%201.03915873%5D%5C%5C%5C%5C%3D%5Cfrac%7B399%20%5C%20MPa%7D%7B0.0114161042%7D%20%5Ctimes%200.0166818905%5C%5C%5C%5C%3D%20399%20%5C%20MPa%20%5Ctimes%201.46125948%5C%5C%5C%5C%3D583.042533%5C%20%5C%20MPa)
Answer:
The Answer to the question is :
Explanation:
The contact angle between the mercury surface and capillary tube wall is Greater than 90.
If the surface of the solid is hydrophobic, the contact angle will be greater than 90 °. On very hydrophobic surfaces the angle can be greater than 150º and even close to 180º.
:nanjan lang din yan sa binasa mo ne........