Answer:
Measuring with a ruler and using final volume minus initial volume
Explanation:
You can measure the volume of a geometric object by measuring its sides with a ruler and calculating the volume according to the corresponding formula for each object. For example, for a rectangular prism it would be

You can also measure the volume of an object by measuring how much water it displaces. To do this you have to fill a measuring cylinder with enough water for the object to be completely submerged and take note of the volume. Then, add the object and note again the volume of the water+object. The difference between both is the volume of the object.

The advantage of the second method is that it can be used for objects with irregular shapes as long as they do not float.
Answer: Percent composition by element
Element Symbol Mass Percent
Hydrogen H 6.498%
Carbon C 19.357%
Nitrogen N 22.574%
Oxygen O 51.571%
HOPE THIS HELPS
Answer:
(a) The proportion of dry air bypassing the unit is 14.3%.
(b) The mass of water removed is 1.2 kg per 100 kg of dry air.
Explanation:
We can express the proportion of air that goes trough the air conditioning unit as
and the proportion of air that is by-passed as
, being
.
The amount of water that goes into the drier inlet has to be 0.004 kg/kg, and can be expressed as:

Replacing the first equation in the second one we have

(b) Of every kg of dry air feed, 85.7% goes in to the air conditioning unit.
It takes (0.016-0.002)=0.014 kg water per kg dry air feeded.
The water removed of every 100 kg of dry air is

It can also be calculated as the difference in humiditiy between the inlet and the outlet: (0.016-0.004=0.012 kgW/kDA) and multypling by the total amount of feed (100 kgDA).
100 * 0.012 = 1.2 kgW
A. Solar energy hope this helps
Answer:
The mass of 8.250 moles of Cu2O is 1180.5g
Explanation:
HOW TO CALCULATE MASS OF A SUBSTANCE:
- The mass of a substance can be calculated by multiplying the number of moles in the substance by its molar mass as follows:
Mass (g) = no. of moles (mol) × molar mass (g/mol)
- Molar mass of copper (I) oxide (Cu2O) = 63.5(2) + 16 = 143.09 g/mol
Mass of Cu2O = 8.250 mol × 143.09 g/mol
Mass of Cu2O = 1180.5 g
Therefore, the mass of 8.250 moles of Cu2O is 1180.5 g.