Answer:
4000J
Explanation:
Given parameters:
Weight of the man = 800N
Height of ladder = 5m
Unknown:
Gravitational potential energy gained = ?
Solution:
The gravitational potential energy is due to the position of a body.
Gravitational potential energy = weight x height
Now insert the parameters;
Gravitational potential energy = 800 x 5 = 4000J
Answer:
The canon B hits the ground fast.
Explanation:
Given that,
Speed of cannon A = 85 m/s
Speed of cannon B= 100 m/s
Speed of cannon C = 75 m/s
We need to calculate the cannonballs will hit the ground with the greatest speed
Using conservation of energy
The final kinetic energy of canon depends on initial kinetic energy and potential energy.
The final velocity depends upon initial velocity and initial height.
So, the initial velocity of canon B is high.
Hence, The canon B hits the ground fast.
Answer:
(a) 5.43 x 10⁵ J
(b) 3.07 x 10⁵ J
(c) 45 °C
Explanation:
(a)
= Latent heat of fusion of ice to water = 3.33 x 10⁵ J/kg
m = mass of ice = 1.63 kg
= Energy required to melt the ice
Energy required to melt the ice is given as
= m
= (1.63) (3.33 x 10⁵)
= 5.43 x 10⁵ J
(b)
E = Total energy transferred = 8.50 x 10⁵ J
Q = Amount of energy remaining to raise the temperature
Using conservation of energy
E =
+ Q
8.50 x 10⁵ = 5.43 x 10⁵ + Q
Q = 3.07 x 10⁵ J
(c)
T₀ = initial temperature = 0°C
T = Final temperature
m = mass of water = 1.63 kg
c = specific heat of water = 4186 J/(kg °C)
Q = Amount of energy to raise the temperature of water = 3.07 x 10⁵ J
Using the equation
Q = m c (T - T₀)
3.07 x 10⁵ = (1.63) (4186) (T - 0)
T = 45 °C
Yes
Explanation:
From the graph, we can deduce that the wavelength changes with the speed of the wave.
This is a simple linear graph. A linear graph has a steady gradient and it shows two variables that increases proportionately.
Using the graph, we can establish that as the wavelength of the wave increases the time taken for one wave to pass through increases.
The speed of a wave is given as:
V = fλ
f is the frequency of the wave i.e the number of waves that passes through a point per unit of time
λ is the wavelength of the wave
The vertical axis on the graph shows the time for 1 wave trip, this is the wave period, T
f = 
Therefore;
speed of the wave = 
This can be evaluated by solving slope of the graph and finding the inverse.
We can see that as the speed of the wave changes, the wavelength will change.
learn more:
Wavelength brainly.com/question/6352445
#learnwithBrainly