Answer:
The store energy in the inductor is 0.088 J
Explanation:
Given that,
Inductor = 100 mH
Resistance = 6.0 Ω
Voltage = 12 V
Internal resistance = 3.0 Ω
We need to calculate the current
Using ohm's law


Put the value into the formula


We need to calculate the store energy in the inductor



Hence, The store energy in the inductor is 0.088 J
Meters for mass kilograms for volume cubic meters for density kilograms per cubic meter
When two mechanical waves that have positive displacements from the equilibrium position meet and coincide, a constructive interference occurs.
Option A
<h3><u>
Explanation:</u></h3>
Considering the principle of superposition of waves; the resultant amplitude of an output wave due to interference of two or more waves at any point is given by individual addition of their amplitudes at that point. Two waves with positive displacements refer to the fact that crest of the both the waves are on the same side of displacement axis, either both are positive or both are negative, similarly with their troughs.
If such two waves with their crest on crest meet at any point, by superposition principle. their individual amplitude gets added up and hence the resultant wave after interference is greater in amplitude that both the individual waves. This is termed as a constructive interference. Destructive interference on the other hand is a condition when one of the two waves has a positive displacement and other has a negative displacement (a condition of one’s crest on other’s trough); resulting in amplitude subtraction.
Answer:
4086 J
Explanation:
The potential energy is transformed to kinetic energy less the frictional energy. Potential energy= mgh where m represent mass, g is acceleration due to gravity and h is the height of cliff
Since we have force of air resistance, work done due to air resistance will be product of force and distance

Substituting 10 Kg for m, 9.81 for g and 60 m for F then the kinetic energy at the bottom will be
KE= 10*9.81*60- (30*60)=4086 J
Given
Three 7 ohm resistor are in series.
The battery is V=10V
To find
The equivalent resistance
Explanation
When the resistance are in series then the resistance are added to find its equivalent.
Thus the equivalent resistance is:

Conclusion
The equivalent resistance is 21 ohm