Answer: I am pretty sure it is (b) what is the value of mass suspended at the end of the spring.
Explanation:
Answer:
Term (symbol) Meaning
Standing wave Waves which appear to be vibrating vertically without traveling horizontally. Created from waves with identical frequency and amplitude interfering with one another while traveling in opposite directions.
Node Positions on a standing wave where the wave stays in a fixed position over time because of destructive interference.
Antinode Positions on a standing wave where the wave vibrates with maximum amplitude.
Fundamental frequency Lowest frequency of a standing wave that has the fewest number of nodes and antinodes.
Harmonic A standing wave that is a positive integer multiple of the fundamental frequency.
Explanation:
Answer:
86 turns
Explanation:
Parameters given:
Magnetic torque, τ = 1.7 * 10^(-2) Nm
Area of coil, A = 9 * 10^(-4) m²
Current in coil, I = 1.1 A
Magnetic field, B = 0.2 T
The magnetic toque is given mathematically as:
τ = N * I * A * B
Where N = number of turns
To find the number of turns, we make N subject of formula:
N = τ/(I * A * B)
Therefore:
N = (1.7 * 10^(-2)) / (1.1 * 9 * 10^(-4) * 0.2)
N = 85.85 = 86 turns (whole number)
The number of turns must be 86.
Static frictional force = ƒs = (Cs) • (Fɴ)
2.26 = (Cs) • m • g
2.26 = (Cs) • (1.85) • (9.8)
Cs = 0.125
kinetic frictional force = ƒκ = (Cκ) • (Fɴ)
1.49 = (Cκ) • m • g
1.49 = (Cκ) • (1.85) • (9.8)
Cκ = 0.0822
Use the law of universal gravitation, which says the force of gravitation between two bodies of mass <em>m</em>₁ and <em>m</em>₂ a distance <em>r</em> apart is
<em>F</em> = <em>G m</em>₁ <em>m</em>₂ / <em>r</em>²
where <em>G</em> = 6.67 x 10⁻¹¹ N m²/kg².
The Earth has a radius of about 6371 km = 6.371 x 10⁶ m (large enough for a pineapple on the surface of the earth to have an effective distance from the center of the Earth to be equal to this radius), and a mass of about 5.97 x 10²⁴ kg, so the force of gravitation between the pineapple and the Earth is
<em>F</em> = (6.67 x 10⁻¹¹ N m²/kg²) (1 kg) (5.97 x 10²⁴ kg) / (6.371 x 10⁶ m)²
<em>F</em> ≈ 9.81 N
Notice that this is roughly equal to the weight of the pineapple on Earth, (1 kg)<em>g</em>, where <em>g</em> = 9.80 m/s² is the magnitude of the acceleration due to gravity, so that [force of gravity] = [weight] on any given planet.
This means that on this new planet with twice the radius of Earth, the pineapple would have a weight of
<em>F</em> = <em>G m</em>₁ <em>m</em>₂ / (2<em>r</em>)² = 1/4 <em>G m</em>₁ <em>m</em>₂ / <em>r</em>²
i.e. 1/4 of the weight on Earth, which would be about 2.45 N.