1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kvasek [131]
2 years ago
8

One mole of iron (6 x 10^23 atoms) has a mass of 56 grams, and its density is 7.87 grams per cubic centimeter, so the center-to-

center distance between atoms is 2.28 x 10^-10 m. You have a long thin bar of iron, 2.3 m long, with a square cross section, 0.12 cm on a side. You hang the rod vertically and attach a 149 kg mass to the bottom, and you observe that the bar becomes 1.17 cm longer. From these measurements, it is possible to determine the stiffness of one interatomic bond in iron.
ks = 20014.1 N/m
Number of side-by-side long chains of atoms = 4.81e^12
Number of bonds in total length = 1.096e^10

What is the stiffness of a single interatomic "spring"?
Physics
1 answer:
choli [55]2 years ago
4 0

Answer:

Explanation:

Given that:

length l = 2.3 m

a = 0.12 cm = 0.12  \times 10^{-2} \ m

x = 1.17 \ cm = 1.17 \times 10^{-2}\ m

m = 149 kg

\delta = 7.87 \ g/cm^3

da = 2.28 \times 10^{-10}\ m

F_{net} = F-mg\\ \\0 = F - mg \\ \\  F = mg \\ \\ k_sx = mg \\ \\

∴

k_s = \dfrac{149(9.8)}{1.17 \times 10^{-2}} \\ \\  k_s = 124803.42  \ N /m

N_{chain} = \dfrac{A_{wire}}{A_{atom}} = \dfrac{A_w}{da^2}

N_{chain} = \dfrac{(a)^2}{(da)^2} = (\dfrac{a}{da})^2

N_{chain} =  (\dfrac{0.12 \times 10^{-2} }{2.28 \times 10^{-10}})^2

N_{chain} = 2.77 \times 10^{13}

N_{bond} = \dfrac{L}{da} \\ \\  = \dfrac{2.3}{2.28 \times 10^{-10}} \\ \\ N_{bond} = 1.009 \times 10^{10}

\text{Finally; the stiffness of a single interatomic spring is:}

k_{si} =\dfrac{N_{bond}}{N_{chain}}\times k_s

k_{si} =\dfrac{(1.009 \times 10^{10})}{2.77*10^{13}}}\times (124803.42)

\mathbf{k_{si} =45.46 \ N/m}

You might be interested in
Physical science help
mojhsa [17]
The answer is pulley
4 0
2 years ago
Read 2 more answers
Consider four point charges arranged in a square with sides of length L. Three of the point charges have charge q and one of the
nydimaria [60]

Answer:F_{net}=\frac{kq^2}{(L)^2}\left [ \frac{1}{2}+\sqrt{2}\right ]

Explanation:

Given

Three charges of magnitude q is placed at three corners and fourth charge is placed at last corner with -q charge

Force due to the charge placed at diagonally opposite end on -q charge

F_1=\frac{kq(-q)}{(L\sqrt{2})^2}

where  L\sqrt{2}=Distance between the two charges

F_1=-\frac{kq^2}{2L^2}

negative sign indicates that it is an attraction force

Now remaining two charges will apply the same amount of force as they are equally spaced from -q charge

F_2=\frac{kq(-q)}{(L)^2}

The magnitude of force by both the  charge is same but at an angle of 90^{\circ}

thus combination of two forces at 2 and 3 will be

F'=\sqrt{2}\frac{kq^2}{2L^2}

Now it will add with force due to 1 charge

Thus net force will be

F_{net}=\frac{kq^2}{(L)^2}\left [ \frac{1}{2}+\sqrt{2}\right ]

6 0
2 years ago
A sample of a gas has a volume of 639 cm3 when the pressure is 75.9 kPa. What is the volume of the gas when the pressure is incr
const2013 [10]

Answer:

388 cm^3

Explanation:

For this problem, we can use Boyle's law, which states that for a gas at constant temperature, the product between pressure and volume remains constant:

pV=const.

which can also be rewritten as

p_1 V_1 = p_2 V_2

In our case, we have:

p_1 = 75.9 kPa is the initial pressure

V_1 = 639 cm^3 is the initial volume

p_2 = 125 kPa is the final pressure

Solving for V2, we find the final volume:

v_2 = \frac{p_1 V_1}{p_2}=\frac{(75.9)(639)}{125}=388 cm^3

7 0
3 years ago
A 6,600 kg train car moving at +2.0 m/s bumps into and locks together with one of mass 5,400 kg moving at -3.0 m/s.
Katarina [22]
Option B would be right one
according to momentum conservation
6600*2 = 13200kgm/s
5400*3 = 16200kgm/s
16200-13200 = 3000
now 6600-5400 = 1200 kg
thus 3000/1200 = 2.5 v
5 0
2 years ago
Who wins a tug-of-war one who pushes harder at the ground or pulls harder at the rope
mixas84 [53]
I think pulls harder on the rope
4 0
3 years ago
Read 2 more answers
Other questions:
  • Which change increases the electric force between objects?
    6·2 answers
  • Which statement BEST describes the benefits of muscular fitness training?
    5·1 answer
  • A closed box with square base is to be built to house an ant colony. the bottom of the box and all four sides are to be made of
    13·1 answer
  • How many satellites exist in Earth’s orbit today?
    5·1 answer
  • The earth pulls the moon towards it because of the earth has more mass and therefore moe
    10·1 answer
  • A student studies how an objects mass and speed are related to its kinetic energy. The table shows the results for one part of t
    15·1 answer
  • Describe what happens, at a microscopic level, when an object is charged by rubbing. For instance, what happens when a plastic p
    14·1 answer
  • “What is the relationship between wavelength and frequency?”
    13·1 answer
  • A straight line with a negative slope on a velocity-time graph indicates which of the following?
    6·1 answer
  • What is kinematics??? +_+​
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!