Answer:
Velocity=14[m/s]
Explanation:
We can solve this problem by using the principle of energy conservation, where potential energy becomes kinetic energy.
In the attached image we can see the illustration of the ball falling from the height of 20 meters, at this time the potential energy will have the following value.
![Ep=m*g*h\\where:\\m=3[kg]\\h=20[m]\\](https://tex.z-dn.net/?f=Ep%3Dm%2Ag%2Ah%5C%5Cwhere%3A%5C%5Cm%3D3%5Bkg%5D%5C%5Ch%3D20%5Bm%5D%5C%5C)
![Ep=3*9.81*20\\Ep=588.6[J]](https://tex.z-dn.net/?f=Ep%3D3%2A9.81%2A20%5C%5CEp%3D588.6%5BJ%5D)
When the ball passes through half of the distance (10m) its potential energy will have decreased by half as shown below.
![Ep=3*9.81*10\\Ep=294.3[m]](https://tex.z-dn.net/?f=Ep%3D3%2A9.81%2A10%5C%5CEp%3D294.3%5Bm%5D)
If we know that potential energy is transformed into kinetic energy, we can find the value of speed.
![Ek=\frac{1}{2} *m*v^{2} \\therefore\\v=\sqrt{\frac{Ek*2}{m} } \\v=\sqrt{\frac{294.3*2}{3} } \\\\v=14[m/s]](https://tex.z-dn.net/?f=Ek%3D%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%5C%5Ctherefore%5C%5Cv%3D%5Csqrt%7B%5Cfrac%7BEk%2A2%7D%7Bm%7D%20%7D%20%5C%5Cv%3D%5Csqrt%7B%5Cfrac%7B294.3%2A2%7D%7B3%7D%20%7D%20%5C%5C%5C%5Cv%3D14%5Bm%2Fs%5D)
Answer:
Both will reach to same height
Explanation:
Here we can see that friction is to be ignored
so we can say that work done by all the non conservative forces is change in mechanical energy
Since all non conservative forces here is zero
so mechanical energy is conserved here
so here we can say that sum of initial kinetic energy and potential energy = sum of final kinetic energy and potential energy
So we will have

now maximum height is given as

so here we can say that greatest height will be independent of the mass so they both will reach at same height
The answer to this question is a the estimate the speed of light
It produces Heat Energy that can be used to drive steam turbines to generate Electricity.