Answer:
The velocity of the Mr. miles is 17.14 m/s.
Explanation:
It is given that,
Mr. Miles zips down a water-slide starting at 15 m vertical distance up the scaffolding, h = 15 m
We need to find the velocity of the Mr. Miles at the bottom of the slide. It is a case of conservation of energy which states that the total energy of the system remains conserved. Let v is the velocity of the Mr. miles. So,

g is the acceleration due to gravity

v = 17.14 m/s
So, the velocity of the Mr. miles is 17.14 m/s. Hence, this is the required solution.
Quoting from the article itself:
"Since it is above Earth's atmosphere, it gives us clearer pictures of space than telescopes on Earth can."
Speed of the car given initially
v = 18 m/s
deceleration of the car after applying brakes will be
a = 3.35 m/s^2
Reaction time of the driver = 0.200 s
Now when he see the red light distance covered by the till he start pressing the brakes


Now after applying brakes the distance covered by the car before it stops is given by kinematics equation

here
vi = 18 m/s
vf = 0
a = - 3.35
so now we will have


So total distance after which car will stop is


So car will not stop before the intersection as it is at distance 20 m
Answer:
technically yes
Explanation:
with a gun depending on how fast it shoots so when you fire at something you shoot in front of it a little bit so you hit it but a plane that fast you shoot like 100 feet infront of it...
Prokaryotes lack an organized nucleus and other membrane<span>-bound organelles. Prokaryotic DNA is found in a central part of the cell called the nucleoid. The cell wall of a prokaryote </span>acts<span> as an extra </span>layer<span> of protection helps maintain </span>cell shape<span>, and prevents dehydration.
</span>