Answer:
The mass of water to be added is 2 pounds
Explanation:
The given parameters are;
The mass of the given solution = 2 pounds
The concentration of the given solution = 30%
The desired concentration of the solution = 15%
The mass, m of the acetic acid in the given solution = 30% × 2 pounds
m = 30/100 × 2 pounds = 0.6 pounds
To make a 15% acetic acid solution of acetic acid, the mass X of the required volume, is given as follows;
15% of X = 0.6 pounds
15/100 × X = 3/20 × 0.6 pounds
∴ The mass of the solution required X = 0.6 × 20/3 = 4 pounds
The mass of the solution that will contain 0.6 pounds of acetic acid giving a 15% acetic acid solution is 4 pounds
Therefore, the mass of water to be added to the original solution to make the a 15% acetic acid solution is 2 pounds.
Answer:
1.56 mol H₂
Explanation:
Mg₃(Si₂O₅)₂(OH)₂
<em>There are 4 Si moles per Mg₃(Si₂O₅)₂(OH)₂ mol</em>. With that in mind we can <u>calculate how many Mg₃(Si₂O₅)₂(OH)₂ moles are there in the sample</u>, using the <em>given number of silicon moles</em>:
- 3.120 mol Si *
= 0.78 mol Mg₃(Si₂O₅)₂(OH)₂
Then we can <u>convert Mg₃(Si₂O₅)₂(OH)₂ moles into hydrogen moles</u>, keeping in mind that <em>there are 2 hydrogen moles per Mg₃(Si₂O₅)₂(OH)₂ mol</em>:
- 0.78 mol Mg₃(Si₂O₅)₂(OH)₂ * 2 = 1.56 mol H₂
Metal radiator. When hot water flows through the coils of the radiator , the metal heats up quickly by conduction and then radiates thermal energy into the surrounding air.
Answer: Metal radiator
Answer:
n = 4, l = 2
Explanation:
The number 4 in 4d is the principal quantum number (n).
The letter d in 4d tells us that we have a d orbital, as determined by the <em>secondary quantum number (l</em>).
The quantum number l tells us the shape of the orbital.
l = 0 s orbital
l = 1 p orbital
l = 2 d orbital