is the volume of the sample when the water content is 10%.
<u>Explanation:</u>
Given Data:

First has a natural water content of 25% =
= 0.25
Shrinkage limit, 

We need to determine the volume of the sample when the water content is 10% (0.10). As we know,
![V \propto[1+e]](https://tex.z-dn.net/?f=V%20%5Cpropto%5B1%2Be%5D)
------> eq 1

The above equation is at
,

Applying the given values, we get

Shrinkage limit is lowest water content

Applying the given values, we get

Applying the found values in eq 1, we get


Answer:
#include <iostream>
using namespace std;
void PrintPopcornTime(int bagOunces) {
if(bagOunces < 3){
cout << "Too small";
cout << endl;
}
else if(bagOunces > 10){
cout << "Too large";
cout << endl;
}
else{
cout << (6 * bagOunces) << " seconds" << endl;
}
}
int main() {
PrintPopcornTime(7);
return 0;
}
Explanation:
Using C++ to write the program. In line 1 we define the header "#include <iostream>" that defines the standard input/output stream objects. In line 2 "using namespace std" gives me the ability to use classes or functions, From lines 5 to 17 we define the function "PrintPopcornTime(), with int parameter bagOunces" Line 19 we can then call the function using 7 as the argument "PrintPopcornTime(7);" to get the expected output.
Answer:
Yes. She should be worried about corrosion. The 18-8 stainless exhibits intergranular corrosion due to high (0.08%) carbon content and gross pitting due to low molybdenum content.
Explanation: lol
Answer:
work=281.4KJ/kg
Power=4Kw
Explanation:
Hi!
To solve follow the steps below!
1. Find the density of the air at the entrance using the equation for ideal gases

where
P=pressure=120kPa
T=20C=293k
R= 0.287 kJ/(kg*K)=
gas constant ideal for air

2.find the mass flow by finding the product between the flow rate and the density
m=(density)(flow rate)
flow rate=10L/s=0.01m^3/s
m=(1.43kg/m^3)(0.01m^3/s)=0.0143kg/s
3. Please use the equation the first law of thermodynamics that states that the energy that enters is the same as the one that must come out, we infer the following equation, note = remember that power is the product of work and mass flow
Work
w=Cp(T1-T2)
Where
Cp= specific heat for air=1.005KJ/kgK
w=work
T1=inlet temperature=20C
T2=outlet temperature=300C
w=1.005(300-20)=281.4KJ/kg
Power
W=mw
W=(0.0143)(281.4KJ/kg)=4Kw