Before the impact, let the velocity of the baseball was v m/s.
After being hit by the bat its velocity is -2v
So, change in velocity, Deltav=v-(-2v)=3v
Acceleration is defined as the rate of change in velocity, i.e. actual change in velocity divided by the time taken to change it. Time taken to change velocity is the time of actual contact of the bat and ball, i.e. 0.31 s.
a=(Deltav)/(Deltat)
=(3v)/0.37
Therefore, a/v=3/0.31=9.7 s^-1
So, the ratio of acceleration of the baseball to its original velocity is 9.7.
I believe it is acceleration
The current in the 50 Ω resistor is A) 1.2 A
The centripetal force on the car as it goes around the second curve is twice that compared to the first.
What is Centripetal force?
It is the force that is necessary to keep an object moving in a curved path and that is directed inward toward the center of rotation.
The formula of Centripetal force is:
F(c) = (m* v^2) / r
Here,
At the first curve,
The curve of radius = r
The constant speed = v
At the second curve,
The car speed (v')= 2 v
The radius of the curve (r')=2 r
According to the formula of centripetal Force:
As the car goes around the second curve,
F'(c) = m*v'^2 / r'
F'(c) = m* (2*v)^2 / 2r
F'(c) = 2* F
Thus,
The centripetal force on the car as it goes around the second curve is twice that compared to the first.
Learn more about centripetal force here:
<u>brainly.com/question/14317060</u>
#SPJ4