Answer:
You need a 120V to 24V commercial transformer (transformer 1:5), a 100 ohms resistance, a 1.5 K ohms resistance and a diode with a minimum forward current of 20 mA (could be 1N4148)
Step by step design:
- Because you have a 120V AC voltage supply you need an efficient way to reduce that voltage as much as possible before passing to the rectifier, for that I recommend a standard 120V to 24V transformer. 120 Vrms = 85 V and 24 Vrms = 17V = Vin
- Because 17V is not 15V you still need a voltage divider to step down that voltage, for that we use R1 = 100Ω and R2 = 1.3KΩ. You need to remember that more than 1 V is going to be in the diode, so for our calculation we need to consider it. Vf = (V*R2)/(R1+R2), V = Vin - 1 = 17-1 = 16V and Vf = 15, Choosing a fix resistance R1 = 100Ω and solving the equation we find R2 = 1.5KΩ
- Finally to select the diode you need to calculate two times the maximum current and that would be the forward current (If) of your diode. Imax = Vf/R2 = 10mA and If = 2*Imax = 20mA
Our circuit meet the average voltage (Va) specification:
Va = (15)/(pi) = 4.77V considering the diode voltage or 3.77V without considering it
Answer:
Yes, the flow is turbulent.
Explanation:
Reynolds number gives the nature of flow. If he Reynolds number is less than 2000 then the flow is laminar else turbulent.
Given:
Diameter of pipe is 10mm.
Velocity of the pipe is 1m/s.
Temperature of water is 200°C.
The kinematic viscosity at temperature 200°C is
m2/s.
Calculation:
Step1
Expression for Reynolds number is given as follows:

Here, v is velocity,
is kinematic viscosity, d is diameter and Re is Reynolds number.
Substitute the values in the above equation as follows:


Re=64226.07579
Thus, the Reynolds number is 64226.07579. This is greater than 2000.
Hence, the given flow is turbulent flow.
Answer:
The work of the cycle.
Explanation:
The area enclosed by the cycle of the Pressure-Volume diagram of a Carnot engine represents the net work performed by the cycle.
The expansions yield work, and this is represented by the area under the curve all the way to the p=0 line. But the compressions consume work (or add negative work) and this is substracted fro the total work. Therefore the areas under the compressions are eliminated and you are left with only the enclosed area.
Answer: I am not for sure
Explanation: