Answer:
See explanations for step by step procedures to get answer.
Explanation:
Given that;
Determine the deflection at the center of the beam. Express your answer in terms of some or all of the variables LLL, EEE, III, and M0M0M_0. Enter positive value if the deflection is upward and negative value if the deflection is downward.
This question is incomplete, the complete question is;
Determine the design moment strength (ϕMn) for a W21x73 steel beam with a simple span of 18 ft when lateral bracing for the compression flange is provided at the ends only (i.e., Lb = 18 ft). Report the result in kip-ft.
Use Fy=50 ksi and assume Cb=1.0 (if needed).
Answer: the design moment strength for the W21x73 steel beam is 566.25 f-ft
Explanation:
Given that;
section W 21 x 73 steel beam;
now from the steel table table for this section;
Zx = Sx = 151 in³
also given that; fy = 50 ksi and Cb = 1.0
QMn = 0.9 × Fy × Zx
so we substitute
QMn = 0.9 × 50 × 151
QMn = 6795 k-inch
we know that;
12inch equals 1 foot
so
QMn = 6795 k-inch / 12
QMn = 566.25 f-ft
Therefore the design moment strength for the W21x73 steel beam is 566.25 f-ft
Answer:
c) Strain
Explanation:
For example, the shear strain “γ” on the surface of the rod is determined by measuring the relative angle of twist “φg” over a gage length “Lg”.
Answer:
The time complexity will be "O(n log n)".
Explanation:
- Many realistic Quick sort implementations choose a randomized special edition. The time complexity variable O(n Logn) was predicted in the randomized edition.
- Throughout the randomized version, probably the most disgusting case is also conceivable, but by far the worst scenario for something like a given pattern does not exist as well as randomized Quick sort performs well throughout the practice.