Answer:
A=emitted B=absorbed
Explanation:
If an electron drops down from n=2 to n=1 energy is emitted, and if the electron moves up from n=1 to n=2 energy is absorbed. The amount of energy that is either absorbed or emitted is called quanta.
Answer:
1.7 * 10^-5
Explanation:
1- get the number of moles of PbCl2:
number of moles = mass / molar mass
number of moles = 0.45 / 278.1 = 1.618 * 10^-3 moles
2- get the concentration of Pb2+:
molarity = number of moles of solute / volume of solution in liters
molarity = (1.618 * 10^-3) / (0.1) = 0.0162 M
3- getting concentration of Cl-:
<span>PbCl2(s) <==> Pb2+(aq) + 2Cl-(aq)
</span>We can note that:
For a certain amount of Pb2+ formed, twice this amount of Cl- is formed.
This means that:
for 0.0162 M of Pb2+, 2*0.0168 = 0.0324 M of Cl- is formed
4- getting Ksp:
Ksp = [Pb2+][Cl-]²
Ksp = (0.0162)*(0.0324)²
Ksp = 1.7 * 10^-5
Hope this helps :)
Answer:
The correct answer is 3.36 L
Explanation:
The molecular weight of CO₂ is 44 g/mol (2 O + 1 C= (2 x (16 g/mol )) + 12 g/mol). We have 44 g in 1 mol CO₂, and we want to know how many mol are in 6.6 g:
44 g -------------- 1 mol CO₂
6.6 g -------------- X= 6.6 g x 1 mol / 44 g = 0.15 mol
In normal conditions of temperature and pressure, 1 mol of ideal gas occupies 22.4 L of volume, thus:
1 mol CO₂ ------------ 22.4 L
0.15 mol -------------- X= 3.36 L
So, 6.6 g CO₂ are equivalent to 0.15 mol CO₂ and they occupy 3.36 L.
Answer:
Explanation:
The question is based on the concept of the cleavage of bonds. In the process of the reaction the breaking of bonds is required. The cleavage of the bonds make the bonded electrons free to involve in the reaction process.
Fundamentals:
The cleavage of the bond can be done in two ways: homolytic or heterolytic. The heterolytic cleavage occurs when the shared electrons of the covalent bond are taken away by either of the atom. The heterolytic cleavage results in generation of the charged molecules. On the other hand, the homolytic cleavage is the cleavage in which the shared pair of the electrons are equally distributed, resulting in generation of free radicals.