Answer:
DL = 1.5*10^-4[m]
Explanation:
First we will determine the initial values of the problem, in this way we have:
F = 60000[N]
L = 4 [m]
A = 0.008 [m^2]
DL = distance of the beam compressed along its length [m]
With the following equation we can find DL
![\frac{F}{A} = Y*\frac{DL}{L} \\where:\\Y = young's modulus = 2*10^{11} [Pa]\\DL=\frac{F*L}{Y*A} \\DL=\frac{60000*4}{2*10^{11} *0.008} \\DL= 1.5*10^{-4} [m]](https://tex.z-dn.net/?f=%5Cfrac%7BF%7D%7BA%7D%20%3D%20Y%2A%5Cfrac%7BDL%7D%7BL%7D%20%5C%5Cwhere%3A%5C%5CY%20%3D%20young%27s%20modulus%20%3D%202%2A10%5E%7B11%7D%20%5BPa%5D%5C%5CDL%3D%5Cfrac%7BF%2AL%7D%7BY%2AA%7D%20%5C%5CDL%3D%5Cfrac%7B60000%2A4%7D%7B2%2A10%5E%7B11%7D%20%2A0.008%7D%20%5C%5CDL%3D%201.5%2A10%5E%7B-4%7D%20%5Bm%5D)
Note: The question should be related with the distance, not with the diameter, since the diameter can be found very easily using the equation for a circular area.
![A=\frac{\pi}{4} *D^{2} \\D = \sqrt{\frac{A*4}{\pi} } \\D = \sqrt{\frac{0.008*4}{\\pi } \\\\D = 0.1[m]](https://tex.z-dn.net/?f=A%3D%5Cfrac%7B%5Cpi%7D%7B4%7D%20%2AD%5E%7B2%7D%20%5C%5CD%20%3D%20%5Csqrt%7B%5Cfrac%7BA%2A4%7D%7B%5Cpi%7D%20%7D%20%5C%5CD%20%3D%20%20%5Csqrt%7B%5Cfrac%7B0.008%2A4%7D%7B%5C%5Cpi%20%7D%20%5C%5C%5C%5CD%20%3D%200.1%5Bm%5D)
Answer:
The efficiency of the ramp is, Eff = 6.63 %
Explanation:
Given,
The work done by the person pushing the furniture up the ramp is, W₁ = 1240 J
The work done by the ramp is, W₀ = 822 J
The efficiency of the ramp is given by the formula,
<em> Eff = ( W₀ / W₁ ) x 100%</em>
= ( 822 / 12400 ) x 100%
= 6.63 %
Hence, the efficiency of the ramp is, Eff = 6.63 %
Answer:
The new time period is 
Explanation:
From the question we are told that
The period of oscillation is 
The new length is 
Let assume the original length was 
Generally the time period is mathematically represented as

Now I is the moment of inertia of the stick which is mathematically represented as

So

Looking at the above equation we see that

=>
=> 
=> 
Answer:
Image B represents the force on a positively charged particle caused by an approaching magnet.
Explanation:
The most fundamental law of magnetism is that like shafts repulse each other and dissimilar to posts pull in one another; this can without much of a stretch be seen by endeavoring to put like posts of two magnets together. Further attractive impacts additionally exist. On the off chance that a bar magnet is cut into two pieces, the pieces become singular magnets with inverse shafts. Also, pounding, warming or winding of the magnets can demagnetize them, on the grounds that such dealing with separates the direct game plan of the particles. A last law of magnetism alludes to maintenance; a long bar magnet will hold its magnetism longer than a short bar magnet. The domain theory of magnetism expresses that every single enormous magnet involve littler attractive districts, or domains. The attractive character of domains originates from the nearness of significantly littler units, called dipoles. Iotas are masterminded in such a manner in many materials that the attractive direction of one electron counteracts the direction of another; in any case, ferromagnetic substances, for example, iron are unique. The nuclear cosmetics of these substances is with the end goal that littler gatherings of particles unite as one into zones called domains; in these, all the electrons have the equivalent attractive direction.