Answer:
C. H2O diffuses in.
Explanation:
<em>The phospholipids-made synthetic vesicle in this case will act like a semi-permeable membrane while the solution in the interior lumen will be hypertonic to the surrounding pure water. </em>
<em>Hence, water molecules will diffuse into the lumen through the semi-permeable membrane because of the osmotic gradient that exist between the internal and the surrounding solution of the vesicle.</em>
C. Decreasing the temperature
D. Raising the pressure
<h3>Further explanation</h3>
Given
Reaction
2SO₂+O₂⇔2SO₃+energy
Required
Changes to the formation of products
Solution
The formation of SO₃ is an exothermic reaction (releases heat)
If the system temperature is raised, then the equilibrium reaction will reduce the temperature by shifting the reaction in the direction that requires heat (endotherms). Conversely, if the temperature is lowered, then the equilibrium shifts to a reaction that releases heat (exothermic)
While on the change in pressure, then the addition of pressure, the reaction will shift towards a smaller reaction coefficient
in the above reaction: the number of coefficients on the left is 3 (2 + 1) while the right is 2
As the temperature decreases, the equilibrium will shift towards the exothermic reaction, so the reaction shifts to the right towards SO₃( products-favored)
And increasing the pressure, then the reaction shifts to the right SO₃( products-favored)⇒the number of coefficients is greater
In chemistry, a precipitation reaction is a double replacement reaction. It involves two reactants and two products. It means that the cations and anions of the compounds interchange with one another to yield two products. But what makes precipitation reactions different is that when two liquid reactants are allowed to react together, a solid substance called precipitate is formed. The solid appears because it is insoluble to the other product in aqueous state.
Therefore, basing on the choices given, precipitation reactions apply to letters C and D.