Answer: 0.00068 N
Explanation: Universal gravitational constant=6.674 *10^(-11)
Force=Gm1m2/(r^2)
Force= 6.67*25000*40000*10^(-11)/(10^2)
Force=0.00068 N
Answer:
reduced performance due to stereotype threat
Explanation:
Answer:No
Explanation:
No
As the train is accelerating so train velocity will be more as compared to the ball and thus will cover more distance as compared to the ball.
When the ball is thrown upward with some velocity, it also possesses the train velocity at the time of throwing but as time passes velocity of train increases due to acceleration of the train. This causes the ball to fall behind the point of launch.
P= mv
where p is momentum
m is mass
v is velocity
so it's given p= 100kgm/sec
v= 4m/s
so putting in the formula
100= m × 4
m = 25kg
Although one could definitely directly connect an "apple falling" with Newton's first law of motion, which is gravity, since the question states about acceleration, then we can relate the statement to Newton's second law of motion, the law of acceleration.