According to an article dated back in February 8, 1992 which is entitled, “Science: Stardust is made of diamonds” on a website called newscientist (https://www.newscientist.com/article/mg13318073-000-science-stardust-is-made-of-diamonds/), American astronomers believed that diamonds are made in supernova explosions. It was said that the diamonds were the foundation of uncommon combinations of isotopes found in some meteorites. Donald Clayton of Clemson University in South Carolina suggested that the weightiest isotopes were more common in meteorites for the reason that the rare gases shaped in the neutron-rich outcome of a supernova explosion. Clayton also said, “the observed mixture of isotopes could have been produced only during the collapse of a massive star to form a neutron star”. This happens in a Type II explosion, for example the Supernova 1987A in the Large Magellanic Cloud. And rare gases like xenon become stuck in both weighty and light isotopes after the ejected gas from such a supernova cools down enough to create dust. The existence of the diamonds with these unusual gases in meteorites infers an alike source. Some of the carbon in the supernova fragments produces ordinary graphite dust, whereas some produces diamond dust. Considerable amount of stardust may be made of diamonds, if Clayton was not mistaken.
Answer:
25.35%
Explanation:
Again let me restate the the equation of the reaction;
H2O (ℓ) + 2 MnO4 - (aq) + 3 CN- (aq) → 2 MnO2 (s) + 3 CNO- (aq) + 2 OH- (aq)
Amount of potassium permanganate reacted = 10.2/1000 * 0.08035 = 8.1957 * 10^-4 moles
If 2 moles of MnO4 - reacts with 3 moles of CN-
8.1957 * 10^-4 moles of MnO4 - reacts with 8.1957 * 10^-4 * 3/2
= 1.229 * 10^-3 moles of CN-
Mass of CN- reacted = 1.229 * 10^-3 moles of CN- * 26.02 g/mol
= 0.03 g
Hence, percentage of the cyanide = 0.03 g/0.1183 g * 100
= 25.35%
Answer:
Use the formula q = m·ΔHv in which q = heat energy, m = mass, and ΔHv = heat of vaporization.
Explanation:
:)
Answer:
amount of charge
Explanation:
Oxygen and sulfur are both in Group 16, which means they have a -2 charge. They have two more electrons than protons, making the charge of the ion negative.
Hope that helps.
<span>Answers are:
-4 for C in CH4, because carbon has greater electronegativity than hydrogen and he attracts shared electrons.
</span><span>+4 for C in CO2, because carbon has smaller electronegativity than oxygen.
</span><span>+1 for H in both CH4 and H2O, because hydrogen has amaller electronegativity than both carbon and oxygen.
</span>