Answer:
Explanation:
The processes are described on the image attached below. The isobaric process consists of an horizontal line, the adiabatic expansion is described by a polytropic curve:

Where:


Final pressure is:



Answer:
case x py L is in the positive z direction
case y px L the negative z direction
Explanation:
The angular amount is defined by the relation
L = r x p
the bold are vectors, where r is the position vector and p is the linear amount vector.
The module of this vector can be concentrated by the relation
L = r p sin θ
the direction of the vector L can be found by the right-hand rule where the thumb points in the direction of the displacement vector, the fingers extended in the direction of the moment p which is the same direction of speed and the palm points in the direction of the angular momentum L
in the case x py
the thumb is in the x direction, the fingers are extended in the direction and the palm is in the positive z direction
In the case y px
the thumb is in the y direction, the fingers are in the x direction, the palm is in the negative z direction
Answer:
all of the above
Explanation:
- a build up of electric charge
- the force and motion of electrically charged particles
- an electric current
are three different ways to describe electricity.
So the answer is all of the above.
The two wires carry current in opposite directions: this means that if we see them from above, the magnetic field generated by one wire is clock-wise, while the magnetic field generated by the other wire is anti-clockwise. Therefore, if we take a point midway between the two wires, the resultant magnetic field at this point is just the sum of the two magnetic fields, since they act in the same direction.
Therefore, we should calculate the magnetic field generated by each wire and then calculate their sum. We are located at a distance r=0.10 m from each wire.
The magnetic field generated by wire 1 is:

The magnetic field generated by wire 2 is:

And so, the resultant magnetic field at the point midway between the two wires is