Adrenaline gives you energy and stimulates your heart. When in stressful situations, like survival, you’re body is reacting and releasing this hormone.
Arrhenius' Law relates activation energy, Ea, rate constant, K, and temperature, T as per this equation:
K (T) = A * e ^ (-Ea / RT), where R is the universal constant of gases and A is a constant which accounts for collision frequency..
Then you can find the ration between K's at two different temperatures as:
K1 = A * e ^ (-Ea / RT1)
K2 = A* e ^(-Ea / RT2)
=> K1 / K2 = e ^ { (-Ea / RT1) - Ea / RT2) }
=> K1 / K2 = e ^ {(-Ea/ R ) *( 1 / T1 - 1 T2) }
=> K1 / K2 = e^ { (-205,000 j/mol / 8.314 j/mol*k )* ( 1 / 505K - 1/ 485K) }
=> K1 / K2 = e ^ (2.0134494) ≈ 7.5
Answer: 7.5
<em><u>examples of metalloids :
</u>Boron,Silicon ,Germanium are some metalloids ...
<u>what they do:
</u>they are used to form the semiconductors and these semiconductors are used in modern computer technology like in circuits ,chips and computer based gadgets... :) <u>
</u></em>
The key difference is that in (most modern interpretations of) the Schrodinger model the electron of a one-electron atom, rather than traveling in fixed orbits about the nucleus, has a probablity distribution permitting the electron to be at almost all locations in space, some being much more likely than others
Answer:
Wavelength (λ) = 1.875 × 10⁻⁶ m
Explanation:
Given:
Energy (e) = 1.06 × 10⁻¹⁹ J
Find:
Wavelength (λ) = ?
Computation:
e = hc / λ
λ = hc / e
where c = 3 × 10⁸
Planck's constant (h) = 6.625 × 10⁻³⁴
So,
Wavelength (λ) = (6.625 × 10⁻³⁴)(3 × 10⁸) / (1.06 × 10⁻¹⁹)
1. Wavelength (λ) = 1.875 × 10⁻⁶ m
2. Given n = 4 to n = 3 both are integer not fraction so, electron is quantize