Answer:
(a) 11.8692 ohm
(b) 12.447 A
(c) 17.6 A
Explanation:
a) inductive reactance Z = L Ω
= L x 2π x F
= 45.0 x 10⁻³ x 2(3.14) x 42
= 11.8692 ohm
b) rms current
= 100 / 8.034
= 12.447 A
c) maximum current in the circuit
= I eff x rac2
= 12.447 x 1.414
= 17.6 A
Answer:
The answer is below
Explanation:
The initial velocity = u = 82.5 km/h = 22.92 m/s, the final velocity = 32.5 km/h = 9.03 m/s, diameter = 91.55 cm = 0.9144 cm
radius (r) = diameter / 2 = 0.9144 / 2= 0.4572 m
a) Initial angular velocity (
) = u /r = 22.92 / 0.4572 = 50.13 rad/s, final velocity (ω) = v / r = 9.03 / 0.4592 = 19.67 rad / s
θ = 95 rev * 2πr = 95 * 2π * 0.4572= 272.9 rad
angular acceleration (α) is:

b)
c) θ = 95 rev * 2πr = 95 * 2π * 0.4572= 272.9 rad
a) When it stops, the final angular velocity is 0. Hence:

θ = 323 rad
Answer:
D. demand; increased
Explanation:
Demand is how much people want it.
Answer:
O The particles of the medium move more slowly and there are fewer chances to transfer energy.
Explanation:
Various media are made up of particles. These particles are in constant motion according to the kinetic theory of matter. Recall that temperature has been defined as the average kinetic energy of the particles in a medium. Hence, for any given medium, the velocity of particle motion increases or decreases linearly with temperature.
The speed of particles in any medium increases or decreases as the temperature of the medium increases or decreases as emphasised above. Hence, at low temperature, the velocity of waves set up by the motion of particles in a medium decreases and transfer the wave energy to neighbouring particles occurs more slowly than at high temperatures.
Answer:
The answer you have selected is correct.
Explanation:
Increase radius, force of gravity decreases