<h3>No:1</h3>
The object is moving with constant or uniform acceleration and in average speed
<h3>No:-2</h3>
The object is de accelerating
<h3>No:-3</h3>
The object deaccelerated and came to rest so fast.
<h3>No:-4</h3>
The object moves slowly first then accelerated.
<h3>No:-5</h3>
The object accelerated at first so fast then move with constant acceleration then again accelerated .
You get a more low sound.
Conversely, when the wavelength becomes shorter you get a more treble sound.
;-)
There is no temperature change which drives heat flow, thus no heat will be released by the water.
<h3>
Heat released by the water when it freezes</h3>
The heat released by the water when it freezes is calculated as follows;
Q = mcΔФ
where;
- m is mass of water
- c is specific heat capacity of water
- ΔФ is change in temperature = Фf - Фi
Initial temperature of water, Фi = 0 °C
when water freezes, the final temperature, Фf = 0 °C
Q = 22 x 4200 x (0 - 0)
Q = 0
Since there is no temperature change which drives heat flow, thus no heat will be released by the water.
Learn more about heat flow here: brainly.com/question/14437874
Answer:
(a). The initial velocity is 28.58m/s
(b). The speed when touching the ground is 33.3m/s.
Explanation:
The equations governing the position of the projectile are


where
is the initial velocity.
(a).
When the projectile hits the 50m mark,
; therefore,

solving for
we get:

Thus, the projectile must hit the 50m mark in 1.75s, and this condition demands from equation (1) that

which gives

(b).
The horizontal velocity remains unchanged just before the projectile touches the ground because gravity acts only along the vertical direction; therefore,

the vertical component of the velocity is

which gives a speed
of

