Newton's law of universal gravitation states that a particle attracts every other particle in the universe using a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between them
I believe the correct gravity on the moon is 1/6 of Earth.
Take note there is a difference between 1 6 and 1/6.
HOWEVER, we should realize that the trick here is that the
question asks about the MASS of the astronaut and not his weight. Mass is an
inherent property of an object, it is unaffected by external factors such as
gravity. What will change as the astronaut moves from Earth to the moon is his
weight, which has the formula: weight = mass times gravity.
<span>Therefore if he has a mass of 50 kg on Earth, then he will
also have a mass of 50 kg on moon.</span>
Answer:
This means C.the car uses 20% of the energy store in the gasoline for motion.
Explanation:
I hope this helps.
Answer:
(a) ω = 1.57 rad/s
(b) ac = 4.92 m/s²
(c) μs = 0.5
Explanation:
(a)
The angular speed of the merry go-round can be found as follows:
ω = 2πf
where,
ω = angular speed = ?
f = frequency = 0.25 rev/s
Therefore,
ω = (2π)(0.25 rev/s)
<u>ω = 1.57 rad/s
</u>
(b)
The centripetal acceleration can be found as:
ac = v²/R
but,
v = Rω
Therefore,
ac = (Rω)²/R
ac = Rω²
therefore,
ac = (2 m)(1.57 rad/s)²
<u>ac = 4.92 m/s²
</u>
(c)
In order to avoid slipping the centripetal force must not exceed the frictional force between shoes and floor:
Centripetal Force = Frictional Force
m*ac = μs*R = μs*W
m*ac = μs*mg
ac = μs*g
μs = ac/g
μs = (4.92 m/s²)/(9.8 m/s²)
<u>μs = 0.5</u>