Answer:Evolution
Evolution is the process by which populations of organisms change over generations. … If a trait is advantageous and helps the individual survive and reproduce, the genetic variation is more likely to be passed to the next generation (a process known as natural selection).
Let A be the 80% solution and B be the 20% solution and P be the produce solution of 70%. Va and Vb and Vp are the volumes of A and B and P respectively.
Va + 60 = Vp
0.7Vp = 0.8Va + 0.2(60)
Substituting the value of Vp from the first equation:
0.7(Va + 60) = 0.8Va + 12
30 = 0.1Va
Va = 300 gallons
I think this is the answer try it
172.3995<span>
</span>
The new volume be if the pressure inside the balloon was reduced to 58kpa is 2.58 L.
<h3>What is ideal gas equation?</h3>
Ideal gas equation PV=nRT gives idea about the behavior of gases at different conditions and for this question the equation becomes:
P₁V₁ = P₂V₂, where
P₁ = initial pressure = 115.3 kpa
V₁ = initial volume = 1.3 L
P₂ = final pressure = 58 kpa
V₂ = final volume = ?
On putting all these values in the above equation, we get
V₂ = (115.3)(1.3) / (58) = 2.58 L
Hence resultant volume of gas is 2.58 L.
To know more about ideal gas equation, visit the below link:
brainly.com/question/18909295
#SPJ1
Answer:
2.2×10^8
Explanation:
Cu(OH)2(s)<---------> Cu^2+(aq) + 2OH^-(aq) Ksp=2.2 x 10 ^-20
2H3O^+(aq) + 2OH^-(aq) <-------> 4H2O(l). Kw= 1×10^14
Cu^2+(aq) + 4H2O(l) <--------> [Cu(H2O)4]^2+(aq)
Overall ionic reaction:
Cu(OH)2(s) +2H3O^+(aq) <---------> [Cu(H20)4]^2+(aq)
Equilibrium constant for the reaction: Ksp×Kw= 2.2 x 10 ^-20 × (1/(1×10^-14))^2
Keq= 2.2×10^8
Kw= ion dissociation constant of water