All Offsprings will be round because it comes out as dominant evrytime and it has 0 ressesives. Hope this helped ;)
Answer:
There are total eight planets in the solar system and the average distance from the sun to each planet in increasing order is given below.
Explanation:
The average distance from the sun is listed below in increasing order.
1. Mercury - It is the most closet planet to Sun, 57 million km
2. Venus - 108 million km
3. Earth - 150 million km
4. Mars - 228 million km
5. Jupiter - 779 million km
6. Saturn - 1.43 billion km
7. Uranus - 2.88 billion km
8. Neptun - It is the most farthest from the Sun, 4.50 billion km
Answer:
R=m*g-∀fl*g*l3
Explanation:
<em>An iron block of density rhoFe and of volume l 3 is immersed in a fluid of density rhofluid. The block hangs from a scale which reads W as the weight. The top of the block is a height h below the surface of the fluid. The correct equation for the reading of the scale is</em>
From Archimedes' principle we know that a body when immersed in a fluid, fully or partially, experiences an the upward buoyant force equal to the weight of the fluid displaced. As the body is fully submerged in water, volume of water displaced
density of iron =mass/ volume
rho=m/l3
mass=rhol3
weight fluid=rhofluid*g*Volume
weight of fluid=rhofluid*g*l3
F=∀fl*g*l3
Downward force is weight of iron
w=m*g
Reading on the spring scale
R=w-F
R=m*g-∀fl*g*l3
m=mass of iron
g=acceleration due to ravity
rhfld=density of fluid
l3=volume of fluid displaced
For t1:
t1 = square root of 2h1 / g = square root of 2 * 0.5 / 9.8 = 0.319 sec
For t2:
t2 = sqaure root of 2h2 / g = square root of 2 * 1.0 / 9.8 = 0.451 sec
Wherein:
t = time(s) for the vertical movement
h= height
g = gravity (using the standard 9.8 m/sec measurement)
d1 = 1*0.319 = 0.319 m
d2 = 0.5 * 0.451 = 0.225 m
Where:
d = hor. distance
ratio = d1:d2
= 0.319 : 0.225
=3.19 : 2.25
The answer is 3.19 : 2.25
Answer:
#2) The spaceship's forward motion must be slowed down so the earth's gravitational pull on it will be stronger than the ship's forward motion.