1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Volgvan
3 years ago
9

When would you use a compound microscope?

Physics
1 answer:
Vladimir [108]3 years ago
8 0
 a compound microscope is used for viewing samples at high magnification<span> 40 - 1000x, which is achieved by the combined effect of two sets of lenses: the ocular lens in the eyepiece and the objective lenses close to the sample.</span>
You might be interested in
Does mars has a bulge near its equator ?
Keith_Richards [23]
Yessir it sure does
7 0
3 years ago
A 24 cm radius aluminum ball is immersed in water. Calculate the thrust you suffer and the force. Knowing that the density of al
Illusion [34]

Answer:

W =1562.53 N

Explanation:

It is given that,

Radius of the aluminium ball, r = 24 cm = 0.24 m

The density of Aluminium, d=2698.4\ kg/m^3

We need to find the thrust and the force. The mass of the liquid displaced is given by :

m=dV

V is volume

Weight of the displaced liquid

W = mg

W=dVg

So,

W=dg\times \dfrac{4}{3}\pi r^3\\\\W=2698.4\times 10\times \dfrac{4}{3}\times \pi \times (0.24)^3\\\\W=1562.53\ N

So, the thrust and the force is 1562.53 N.

7 0
3 years ago
Practice 3: Label the correct phase that would result from the Moon and Earth in these positions.
Anna71 [15]

Answer:

both position I think in nor

5 0
3 years ago
Read 2 more answers
Physics B 2020 Unit 3 Test
weqwewe [10]

Answer:

1)

When a charge is in motion in a magnetic field, the charge experiences a force of magnitude

F=qvB sin \theta

where here:

For the proton in this problem:

q=1.602\cdot 10^{-19}C is the charge of the proton

v = 300 m/s is the speed of the proton

B = 19 T is the magnetic field

\theta=65^{\circ} is the angle between the directions of v and B

So the force is

F=(1.602\cdot 10^{-19})(300)(19)(sin 65^{\circ})=8.28\cdot 10^{-16} N

2)

The magnetic field produced by a bar magnet has field lines going from the North pole towards the South Pole.

The density of the field lines at any point tells how strong is the magnetic field at that point.

If we observe the field lines around a magnet, we observe that:

- The density of field lines is higher near the Poles

- The density of field lines is lower far from the Poles

Therefore, this means that the magnetic field of a magnet is stronger near the North and South Pole.

3)

The right hand rule gives the direction of the  force experienced by a charged particle moving in a magnetic field.

It can be applied as follows:

- Direction of index finger = direction of motion of the charge

- Direction of middle finger = direction of magnetic field

- Direction of thumb = direction of the force (for a negative charge, the direction must be reversed)

In this problem:

- Direction of motion = to the right (index finger)

- Direction of field = downward (middle finger)

- Direction of force = into the screen (thumb)

4)

The radius of a particle moving in a magnetic field is given by:

r=\frac{mv}{qB}

where here we have:

m=6.64\cdot 10^{-22} kg is the mass of the alpha particle

v=2155 m/s is the speed of the alpha particle

q=2\cdot 1.602\cdot 10^{-19}=3.204\cdot 10^{-19}C is the charge of the alpha particle

B = 12.2 T is the strength of the magnetic field

Substituting, we find:

r=\frac{(6.64\cdot 10^{-22})(2155)}{(3.204\cdot 10^{-19})(12.2)}=0.366 m

5)

The cyclotron frequency of a charged particle in circular motion in a magnetic field is:

f=\frac{qB}{2\pi m}

where here:

q=1.602\cdot 10^{-19}C is the charge of the electron

B = 0.0045 T is the strength of the magnetic field

m=9.31\cdot 10^{-31} kg is the mass of the electron

Substituting, we find:

f=\frac{(1.602\cdot 10^{-19})(0.0045)}{2\pi (9.31\cdot 10^{-31})}=1.23\cdot 10^8 Hz

6)

When a charged particle moves in a magnetic field, its path has a helical shape, because it is the composition of two motions:

1- A uniform motion in a certain direction

2- A circular motion in the direction perpendicular to the magnetic field

The second motion is due to the presence of the magnetic force. However, we know that the direction of the magnetic force depends on the sign of the charge: when the sign of the charge is changed, the direction of the force is reversed.

Therefore in this case, when the particle gains the opposite charge, the circular motion 2) changes sign, so the path will remains helical, but it reverses direction.

7)

The electromotive force induced in a conducting loop due to electromagnetic induction is given by Faraday-Newmann-Lenz:

\epsilon=-\frac{N\Delta \Phi}{\Delta t}

where

N is the number of turns in the loop

\Delta \Phi is the change in magnetic flux through the loop

\Delta t is the time elapsed

From the formula, we see that the emf is induced in the loop (and so, a current is also induced) only if \Delta \Phi \neq 0, which means only if there is a change in magnetic flux through the loop: this occurs if the magnetic field is changing, or if the area of the loop is changing, or if the angle between the loop and the field is changing.

8)

The flux is calculated as

\Phi = BA sin \theta

where

B = 5.5 T is the strength of the magnetic field

A is the area of the coil

\theta=18^{\circ} is the angle between the  direction of the field and the plane of the loop

Here the loop is rectangular with lenght 15 cm and width 8 cm, so the area is

A=(0.15 m)(0.08 m)=0.012 m^2

So the flux is

\Phi = (5.5)(0.012)(sin 18^{\circ})=0.021 Wb

See the last 7 answers in the attached document.

Download docx
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> docx </span>
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> pdf </span>
5 0
3 years ago
Which one of the following statements concerning superconductors is false? A constant current can be maintained in a superconduc
julsineya [31]

Answer:

All materials are superconducting at temperatures near absolute zero kelvin.

Explanation:

All materials are superconducting at temperatures near absolute zero kelvin is false concerning superconductors.

8 0
3 years ago
Other questions:
  • If you pour different liquids into a graduated cylinder, which layer would be at the bottom?
    7·1 answer
  • Why are there shadows?
    10·2 answers
  • During a tennis serve, a racket is given an angular acceleration of magnitude 150 rad/s^2. At the top of the serve, the racket h
    6·1 answer
  • A current-carrying wire is bent into a circular loop of radius R and lies in an xy plane. A uniform external magnetic field B in
    12·1 answer
  • Generally, children begin to form a self-concept around ______ months of age.​<br> ​
    10·1 answer
  • Can you make sunglasses from new 3D-glasses???
    13·2 answers
  • Based on the images seen here, identify which phase of matter would transmit sound waves the fastest, and why?
    5·2 answers
  • Please answer and ill give brainliest
    12·1 answer
  • Which describe the image formed by the convex
    7·1 answer
  • R=1m.<br> Vt=+- 8m/s<br> atot (tan<br> √3)
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!