E = <u>kQ</u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>
(r + h)²
where,
k = 9 × 10^9Nm²C^-2
Q = total charge, 300uC = 300 × 10^ -6C
r = 8 × 10^ -2m
h = 16 × 10^ -2m
then,
E = <u>9</u><u>e</u><u>9</u><u> </u><u>*</u><u> </u><u>3</u><u>0</u><u>0</u><u>e</u><u>^</u><u>-</u><u>6</u><u> </u><u> </u><u> </u><u> </u>
(8e^-2 + 16e^-2)²
E = 4687500N/C
Answer:
<h2>1116.9 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 438 × 2.55
We have the final answer as
<h3>1116.9 N</h3>
Hope this helps you
Answer: She is incorrect to conclude that the reaction is endothermic.
As in the second trial, the temperature has increased by 20 °C , that means the heat has been released and energy is released in exothermic reactions.
Exothermic reactions: The reactions in which the energy of the products is less than the energy of the reactants, and the excess energy is released as heat.
Endothermic reactions: The reactions in which the energy of the products is more than the energy of the reactants, and the excess energy is absorbed as heat.
Answer:
β = 114 db
Explanation:
The intensity of sound in decibles is
β = 10 log 
in most cases Io is the hearing threshold 1 10-12 W / cm²
let's calculate the intensity of each instrument
I / I₀ = 10 (β / 10)
I = I₀ 10 (β / 10)
trumpet
I1 = 1 10⁻¹² 10 (94/10)
I1 = 2.51 10⁻³ / cm²
Thrombus
I2 = 1 10⁻¹² 10 (107/10)
I2 = 5.01 10-2 W / cm²
low
I3 =1 1-12 (113/10) W/cm²
I3 = 1,995 10-1 W / cm²
when we place the three instruments together their sounds reinforce
I_total = I₁ + I₂ + I₃
I_ttoal = 2.51 10-3 + 5.01 10-2 + 1.995 10-1
I_total = 0.00251 + 0.0501 + 0.1995
I_total = 0.25211 W / cm²
let's bring this amount to the SI system
β = 10 log (0.25211 / 1 10⁻¹²)
β = 114 db
Yes dams are made wider at the bottom because the pressure of the water pressure is greater there