Resistance = (voltage) / (current)
Resistance = (100 V) / (20 A)
<em>Resistance = 5 Ω (D)</em>
The perceived frequency when the fire truck is moving toward you and away from you will be 370 Hz and 329.59 Hz respectively.
<h3>What is the Doppler effect?</h3>
A sudden change in the frequency due to the distance between the objects and source is explained by the doppler effect.
As the source and observer travel toward each other, the frequency of sound, light, or other waves increases or decreases.
The perceived frequency when the fire truck is moving toward you;

The perceived frequency when the fire truck is moving away from you;

Hence, the perceived frequency when the fire truck in cases 1 and 2 will be 370 Hz and 329.59 Hz.
To learn more about the doppler effect refer to the link;
brainly.com/question/15318474
#SPJ1
The answer is c. +2.0 µC
To calculate this, we will use Coulomb's Law:
F = k*Q1*Q2/r²
where F is force, k is constant, Q is a charge, r is a distance between charges.
k = 9.0 × 10⁹ N*m/C²
It is given:
F = 7.2 N
d = 0.1 m = 10⁻¹ m
Q1 = -4.0 µC = 4 * 1.0 × 10⁻⁶ = 4.0 × 10⁻⁶
Q2 = ?
Thus, let's replace this in the formula for the force:
7.2 = 9.0 × 10⁹ * 4.0 × 10⁻⁶ * Q2/(10⁻¹)²
7.2 = 9 * 4 * 10⁹⁻⁶ * Q2/10⁻¹°²
7.2 = 36 × 10³ * Q2 / 10⁻²
Multiply both sides of the equation by 10⁻²:
7.2 × 10⁻² = 36 × 10³ * Q2
⇒ Q2 = 7.2 × 10⁻² / 36 × 10³ = 7.2/36 × 10⁻²⁻³ = 0.2 × 10⁻⁵ = 2 × 10⁻⁶
Since µC = 1.0 × 10^-6:
Q2 = 2 * 1.0 × 10^-6 = 2 µC
Kinetic energy is a result of mass in motion at a certain velocity.
<span>1 Joule = 1 kg • (m/s)<span>2
</span></span>the force as a function of mass of the object.
A) visible light because it just makes since