Answer: 5.0 moles
Explanation:
From the equation, we see that for every 4 moles of ammonia consumed, 4 moles of nitrogen monoxide are produced (we can reduce this to moles of ammonia consumed = moles of nitrogen monoxide produced).
This means that the answer is <u>5.0 mol</u>
Answer:
6 x 10 (power to the 15) H2
Answer:
74.4 ml
Explanation:
C₆H₈O₇(aq) + 3NaHCO₃(s) => Na₃C₆H₅O₃(aq + 3CO₂(g) + 3H₂O(l)
Given 15g = 15g/84g/mol = 0.1786mole Sodium Bicarbonate
From equation stoichiometry 3moles NaHCO₃ is needed for each mole citric acid or, moles of citric acid needed is 1/3 of moles sodium bicarbonate used.
Therefore, for complete reaction of 0.1786 mole NaHCO₃ one would need 1/3 of 0.1786 mole citric acid or 0.0595 mole H-citrate.
The question is now what volume of 0.8M H-citrate solution would contain 0.0595mole of the H-citrate? This can be determined from the equation defining molarity. That is => Molarity = moles solute / Liters of solution
=> Volume (Liters) = moles citric acid / Molarity of citric acid solution
=> Volume needed in liters = 0.0.0595 mole/0.80M = 0.0744 Liters or 74.4 ml
<u>Answer:</u>
<em>The system is the Answer
</em>
<em></em>
<u>Explanation:</u>
System is the region which is taken into consideration.
While we perform a chemical reaction the system is the substance taken in the container.
So, A thermodynamic system is the amount of matter or the region in universe which is under the study.
The region outside the beaker are called as surroundings.
The beaker (the surface which separates the system from its surroundings) is said to be the boundary
System + surroundings = universe