1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alisha [4.7K]
3 years ago
10

A bullet of mass 0.5 kg is moving horizontally with a speed of 50 m/s when it hits a block

Physics
1 answer:
kupik [55]3 years ago
8 0

Answer:

a) The net momentum of the bullet-block system before the collision is 25 kilogram-meters per second.

b) The initial translational kinetic energy of the bullet before the collision is 625 joules.

c) The final speed of the bullet-block system after the collision is 7.143 meters per second.

d) The total energy of the bullet-block system after the collision is 89.289 joules.

e) 89.289 joules must be done to stop the bullet-block system.

f) The bullet-block system will travel 13.007 meters before stopping.

Explanation:

a) Since no external forces are applied on the system defined by the bullet and the block, then the net momentum is conserved and can be calculated by  the initial momentum of the bullet:

p = m\cdot v_{o} (1)

Where:

p - Net momentum, in kilogram-meters per second.

m - Mass of the bullet, in kilograms.

v_{o} - Initial speed of the bullet, in meters per second.

If we know that m = 0.5\,kg and v_{o} = 50\,\frac{m}{s}, then the net momentum of the bullet-block system before the collision is:

p = (0.5\,kg)\cdot \left(50\,\frac{m}{s} \right)

p = 25\,\frac{kg\cdot m}{s}

The net momentum of the bullet-block system before the collision is 25 kilogram-meters per second.

b) The total energy of the bullet before the collision is its initial translational kinetic energy (K), in joules:

K = \frac{1}{2}\cdot m \cdot v_{o}^{2} (2)

K = \frac{1}{2}\cdot (0.5\,kg)\cdot \left(50\,\frac{m}{s} \right)^{2}

K = 625\,J

The initial translational kinetic energy of the bullet before the collision is 625 joules.

c) Both the bullet and the block experiments a complete inelastic collision, then the final speed of the bullet-block system is calculated solely by the Principle of Momentum Conservation:

v_{f} = \frac{m\cdot v_{o}}{m+M} (3)

Where:

v_{f} - Final speed, in meters per second.

M - Mass of the block, in kilograms.

If we know that m = 0.5\,kg, v_{o} = 50\,\frac{m}{s} and M = 3\,kg, then the final speed of the bullet-block system is:

v_{f} = \left(\frac{0.5\,kg}{0.5\,kg + 3\,kg} \right)\cdot \left(50\,\frac{m}{s} \right)

v_{f} = 7.143\,\frac{m}{s}

The final speed of the bullet-block system after the collision is 7.143 meters per second.

d) The total energy of the bullet-block system after the collision is the translational kinetic energy of the system (K), in joules, is:

K = \frac{1}{2}\cdot (m + M)\cdot v_{f}^{2} (4)

K = \frac{1}{2}\cdot (0.5\,kg + 3\,kg)\cdot \left(7.143\,\frac{m}{s} \right)^{2}

K = 89.289\,J

The total energy of the bullet-block system after the collision is 89.289 joules.

e) By Work-Energy Theorem, magnitude of the work done by friction must be equal to the magnitude of the translational kinetic energy of the system. Hence, 89.289 joules must be done to stop the bullet-block system.

f) The maximum travelled distance of the bullet-block after the collision can be determined by means of Work-Energy Theorem and definition of work:

W = \mu_{k}\cdot (m+M)\cdot g\cdot s (5)

Where:

W - Work done by friction, in joules.

g - Gravitational acceleration, in meters per square second.

s - Travelled distance, in meters.

\mu_{k} - Kinetic coefficient of friction, no unit.

If we know that m = 0.5\,kg, M = 3\,kg, \mu_{k} = 0.2, g = 9.807\,\frac{m}{s^{2}} and W = 89.289\,J, then the travelled distance of the bullet-block system is:

s = \frac{W}{\mu_{k}\cdot (m+M)\cdot g}

s = \frac{89.289\,J}{0.2\cdot (0.5\,kg + 3\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)}

s = 13.007\,m

The bullet-block system will travel 13.007 meters before stopping.

You might be interested in
One litre of crude oil weighs 9.6N. Calculate its specific weight, density and specific gravity.​
Zepler [3.9K]

Answer:

The answer is "\bold{9600 \frac{N}{m^3}, 978.59 \frac{kg}{m^3}, and \ 0.978}"

Explanation:

Given:

\to v=1\ liter= 10^{-3} \ m^3\\\\\to  w= 9.6 \ N\\

calculation:

Specific \ weight =\frac{w}{v}=\frac{9.6}{10^{-3}}=9600 \frac{N}{m^3} \\\\w=mg\\\\m= \frac{w}{g}=\frac{9.6}{9.81}=0.9785\ kg\\\\\rho\ (density)=\frac{m}{v}=\frac{0.9785}{10^{-3}}=978.59 \frac{kg}{m^3}\\\\specific \ gravity = \frac{\prho \ obj}{\rho w}=\frac{978.54}{1000}=0.978

4 0
2 years ago
Time management skills include
dexar [7]
D. Budgeting time, avoiding stress, and prioritizing.
7 0
3 years ago
A jetliner flies at a constant speed covering 467 miles in 3.3 hours. What is the speed of the plane in miles per hour?
stellarik [79]

Answer:

141.152 miles per hour  is the speed of the plane in miles per hour

Explanation:

Speed of plane = Total distance travelled/total time taken -

v = D/t

Substituting the given values in the above equation, we get

v = 467/3.3 miles /hour

v = 141.152 miles per hour

141.152 miles per hour  is the speed of the plane in miles per hour

8 0
3 years ago
If f = 136 lb , determine the resultant couple moment.
olga_2 [115]
136lb?? I'm so confused rn!! I'm super sorry!!
8 0
3 years ago
Help
malfutka [58]
The answer for this is 1200N
6 0
2 years ago
Other questions:
  • Which one of the following statements does not accurately describe vibrations?
    13·1 answer
  • Many household products we consider necessary today such as AM and FM radios, televisions, wireless networks, cordless and cellu
    14·2 answers
  • What is the frequency of an event?
    9·2 answers
  • Which quantity in the equation E=MC^2 represents the speed of light?
    10·2 answers
  • A group of students use a scale to measure the mass of an object. Which of the following would be the appropriate base unit of m
    9·1 answer
  • Consider a spherical Gaussian surface and three charges: q1 = 1.60 μC , q2 = -2.61 μC , and q3 = 3.67 μC . Find the electric flu
    13·1 answer
  • A stone is thrown horizontally at 15 m/s from the top of a cliff 40 meters high. How far from the base does the stone hit the gr
    14·1 answer
  • When a candle burns, which forms of energy does the chemical energy in the candle change to? A. light and sound B. heat and soun
    15·2 answers
  • Put the balloon near (BUT NOT TOUCHING) the wall. Leave about as much space as the width of your pinky finger between the balloo
    11·1 answer
  • a closed system consitts of a pendumluem that is swinging back and forth. if the pendulums gravitational potential energy decrea
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!