1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alisha [4.7K]
2 years ago
10

A bullet of mass 0.5 kg is moving horizontally with a speed of 50 m/s when it hits a block

Physics
1 answer:
kupik [55]2 years ago
8 0

Answer:

a) The net momentum of the bullet-block system before the collision is 25 kilogram-meters per second.

b) The initial translational kinetic energy of the bullet before the collision is 625 joules.

c) The final speed of the bullet-block system after the collision is 7.143 meters per second.

d) The total energy of the bullet-block system after the collision is 89.289 joules.

e) 89.289 joules must be done to stop the bullet-block system.

f) The bullet-block system will travel 13.007 meters before stopping.

Explanation:

a) Since no external forces are applied on the system defined by the bullet and the block, then the net momentum is conserved and can be calculated by  the initial momentum of the bullet:

p = m\cdot v_{o} (1)

Where:

p - Net momentum, in kilogram-meters per second.

m - Mass of the bullet, in kilograms.

v_{o} - Initial speed of the bullet, in meters per second.

If we know that m = 0.5\,kg and v_{o} = 50\,\frac{m}{s}, then the net momentum of the bullet-block system before the collision is:

p = (0.5\,kg)\cdot \left(50\,\frac{m}{s} \right)

p = 25\,\frac{kg\cdot m}{s}

The net momentum of the bullet-block system before the collision is 25 kilogram-meters per second.

b) The total energy of the bullet before the collision is its initial translational kinetic energy (K), in joules:

K = \frac{1}{2}\cdot m \cdot v_{o}^{2} (2)

K = \frac{1}{2}\cdot (0.5\,kg)\cdot \left(50\,\frac{m}{s} \right)^{2}

K = 625\,J

The initial translational kinetic energy of the bullet before the collision is 625 joules.

c) Both the bullet and the block experiments a complete inelastic collision, then the final speed of the bullet-block system is calculated solely by the Principle of Momentum Conservation:

v_{f} = \frac{m\cdot v_{o}}{m+M} (3)

Where:

v_{f} - Final speed, in meters per second.

M - Mass of the block, in kilograms.

If we know that m = 0.5\,kg, v_{o} = 50\,\frac{m}{s} and M = 3\,kg, then the final speed of the bullet-block system is:

v_{f} = \left(\frac{0.5\,kg}{0.5\,kg + 3\,kg} \right)\cdot \left(50\,\frac{m}{s} \right)

v_{f} = 7.143\,\frac{m}{s}

The final speed of the bullet-block system after the collision is 7.143 meters per second.

d) The total energy of the bullet-block system after the collision is the translational kinetic energy of the system (K), in joules, is:

K = \frac{1}{2}\cdot (m + M)\cdot v_{f}^{2} (4)

K = \frac{1}{2}\cdot (0.5\,kg + 3\,kg)\cdot \left(7.143\,\frac{m}{s} \right)^{2}

K = 89.289\,J

The total energy of the bullet-block system after the collision is 89.289 joules.

e) By Work-Energy Theorem, magnitude of the work done by friction must be equal to the magnitude of the translational kinetic energy of the system. Hence, 89.289 joules must be done to stop the bullet-block system.

f) The maximum travelled distance of the bullet-block after the collision can be determined by means of Work-Energy Theorem and definition of work:

W = \mu_{k}\cdot (m+M)\cdot g\cdot s (5)

Where:

W - Work done by friction, in joules.

g - Gravitational acceleration, in meters per square second.

s - Travelled distance, in meters.

\mu_{k} - Kinetic coefficient of friction, no unit.

If we know that m = 0.5\,kg, M = 3\,kg, \mu_{k} = 0.2, g = 9.807\,\frac{m}{s^{2}} and W = 89.289\,J, then the travelled distance of the bullet-block system is:

s = \frac{W}{\mu_{k}\cdot (m+M)\cdot g}

s = \frac{89.289\,J}{0.2\cdot (0.5\,kg + 3\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)}

s = 13.007\,m

The bullet-block system will travel 13.007 meters before stopping.

You might be interested in
. During a collision with a wall, the velocity of a 0.200-kg ball changes from 20.0 m/s toward the wall to 12.0 m/s away from th
mixer [17]

Answer:

106.7 N

Explanation:

We can solve the problem by using the impulse theorem, which states that the product between the average force applied and the duration of the collision is equal to the change in momentum of the object:

F \Delta t = m (v-u)

where

F is the average force

\Delta t is the duration of the collision

m is the mass of the ball

v is the final velocity

u is the initial velocity

In this problem:

m = 0.200 kg

u = 20.0 m/s

v = -12.0 m/s

\Delta t = 60.0 ms = 0.06 s

Solving for F,

F=\frac{m(v-u)}{\Delta t}=\frac{(0.200 kg) (-12.0 m/s-20.0 m/s)}{0.06 s}=-106.7 N

And since we are interested in the magnitude only,

F = 106.7 N

5 0
3 years ago
Read 2 more answers
According to Newton's Second Law, the force of the club hitting the golf ball will cause it to accelerate. At the moment of impa
vazorg [7]

Answer:

Option B

Explanation:

<h3>According to Newton's third law, for every reaction there will be equal and opposite reaction</h3>

Here in this case the force of the club hitting the golf ball will be in one direction and the force acting on club due to golf ball will be in opposite direction and magnitude of this force will be same as the magnitude of the force of the club hitting the golf ball

In this case the action will be the force of the club hitting the golf ball and reaction will be the force acting on club due to golf ball

∴ The club pushes against to golf ball with a force equal and opposite to the force of the golf ball on the club  

8 0
3 years ago
Read 2 more answers
You are driving a car with an automatic transmission; the shifter is mounted on the steering column. When you press down on the
castortr0y [4]

Answer:

From the narrative in the question, there seem to have been a break failure and the ordered step of response to this problem is to

1) Put on the hazard light to inform other road users of a problem or potential fault with your car and so they should continue their journey with caution.

2) Avoid pressing on the acceleration pedal as this might cause the car to gradually slow down due to friction and gravity

3)Try navigate the car to the service lane. This is the less busy lane where cars are sometimes parked briefly.

4) Continuously pump the breaks to try stop the car. Continuously pumping the breaks might just help you build enough pressure to stop the car because often time, there are some pressure left in the break.

5) At this point, the speed of the car should be relatively slow. So at this point, you could try apply the emergency hand break. Do not pull the emergency hand breaks if the car is on high speed. Doing this may cause the car to skid off the road.

8 0
2 years ago
There is a bell at the top of a tower that is 45 m high. The bell weighs 190 N. The bell has ____________
salantis [7]

Answer:

The bell has a potential energy of 8550 [J]

Explanation:

Since the belt is 45 [m] above ground level, only potential energy is available. And this energy can be calculated by means of the following equation.

E_{p}= W*h\\E_{p} = 190*45\\E_{p}=8550[J]

8 0
2 years ago
According to Freud, adults fixated in which stage could feel constantly out of control?
yarga [219]

 <span>AnalStage. </span>According to Freud, a<span>dults fixated in this area could feel constantly out of control or could need to be in control all the time. Pleasure focus is on the anus, which occurs when a child learns to control bladder and bowel movements. Fixation in this area can be caused from struggles during potty training.</span>

6 0
3 years ago
Other questions:
  • 6. The table shows the first five energy levels for mercury. A mercury atom makes a transition that emits a photon with a freque
    13·1 answer
  • A spherical balloon is filled with gas at a rate of 4 cm 3 /s . at what rate is the radius r changing with with respect to time
    5·1 answer
  • A war wolf is a device used during the middle ages to assault fortifications with large rocks. A simple trebuchet is constructed
    5·1 answer
  • Elaborate on the reason that "cola" type drinks are used to make effective marinades.
    13·2 answers
  • Projectile Motion
    8·1 answer
  • An object in free fall travels a distance s that is directly proportional to the square of the time t. If an object falls 1088 f
    10·1 answer
  • Sodium chloride (NaCl) is an ionic solid. It dissolves easily in water. Which property of water allows it to dissolve NaCl? Wate
    5·1 answer
  • Isaac drops a rubber ball drom height of 2.0m and it bounces to a height of 1.5m. a) What fraction of it's initial energy is los
    5·1 answer
  • How would you find the speed of a person who walked
    12·1 answer
  • en la parte inferior de un tanque de 7 m de altura se coloca un tubo de 38 mm de diámetro ¿con que velocidad fluirá el agua por
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!