1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alisha [4.7K]
2 years ago
10

A bullet of mass 0.5 kg is moving horizontally with a speed of 50 m/s when it hits a block

Physics
1 answer:
kupik [55]2 years ago
8 0

Answer:

a) The net momentum of the bullet-block system before the collision is 25 kilogram-meters per second.

b) The initial translational kinetic energy of the bullet before the collision is 625 joules.

c) The final speed of the bullet-block system after the collision is 7.143 meters per second.

d) The total energy of the bullet-block system after the collision is 89.289 joules.

e) 89.289 joules must be done to stop the bullet-block system.

f) The bullet-block system will travel 13.007 meters before stopping.

Explanation:

a) Since no external forces are applied on the system defined by the bullet and the block, then the net momentum is conserved and can be calculated by  the initial momentum of the bullet:

p = m\cdot v_{o} (1)

Where:

p - Net momentum, in kilogram-meters per second.

m - Mass of the bullet, in kilograms.

v_{o} - Initial speed of the bullet, in meters per second.

If we know that m = 0.5\,kg and v_{o} = 50\,\frac{m}{s}, then the net momentum of the bullet-block system before the collision is:

p = (0.5\,kg)\cdot \left(50\,\frac{m}{s} \right)

p = 25\,\frac{kg\cdot m}{s}

The net momentum of the bullet-block system before the collision is 25 kilogram-meters per second.

b) The total energy of the bullet before the collision is its initial translational kinetic energy (K), in joules:

K = \frac{1}{2}\cdot m \cdot v_{o}^{2} (2)

K = \frac{1}{2}\cdot (0.5\,kg)\cdot \left(50\,\frac{m}{s} \right)^{2}

K = 625\,J

The initial translational kinetic energy of the bullet before the collision is 625 joules.

c) Both the bullet and the block experiments a complete inelastic collision, then the final speed of the bullet-block system is calculated solely by the Principle of Momentum Conservation:

v_{f} = \frac{m\cdot v_{o}}{m+M} (3)

Where:

v_{f} - Final speed, in meters per second.

M - Mass of the block, in kilograms.

If we know that m = 0.5\,kg, v_{o} = 50\,\frac{m}{s} and M = 3\,kg, then the final speed of the bullet-block system is:

v_{f} = \left(\frac{0.5\,kg}{0.5\,kg + 3\,kg} \right)\cdot \left(50\,\frac{m}{s} \right)

v_{f} = 7.143\,\frac{m}{s}

The final speed of the bullet-block system after the collision is 7.143 meters per second.

d) The total energy of the bullet-block system after the collision is the translational kinetic energy of the system (K), in joules, is:

K = \frac{1}{2}\cdot (m + M)\cdot v_{f}^{2} (4)

K = \frac{1}{2}\cdot (0.5\,kg + 3\,kg)\cdot \left(7.143\,\frac{m}{s} \right)^{2}

K = 89.289\,J

The total energy of the bullet-block system after the collision is 89.289 joules.

e) By Work-Energy Theorem, magnitude of the work done by friction must be equal to the magnitude of the translational kinetic energy of the system. Hence, 89.289 joules must be done to stop the bullet-block system.

f) The maximum travelled distance of the bullet-block after the collision can be determined by means of Work-Energy Theorem and definition of work:

W = \mu_{k}\cdot (m+M)\cdot g\cdot s (5)

Where:

W - Work done by friction, in joules.

g - Gravitational acceleration, in meters per square second.

s - Travelled distance, in meters.

\mu_{k} - Kinetic coefficient of friction, no unit.

If we know that m = 0.5\,kg, M = 3\,kg, \mu_{k} = 0.2, g = 9.807\,\frac{m}{s^{2}} and W = 89.289\,J, then the travelled distance of the bullet-block system is:

s = \frac{W}{\mu_{k}\cdot (m+M)\cdot g}

s = \frac{89.289\,J}{0.2\cdot (0.5\,kg + 3\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)}

s = 13.007\,m

The bullet-block system will travel 13.007 meters before stopping.

You might be interested in
What are two benefits of scientists using a diagram to model the water cycle?
Sidana [21]

Explanation:

it can be used to show how the parts of the cycle relate to one another

8 0
2 years ago
You have a spring-loaded air rifle. When it is loaded, the spring is compressed 0.3 m and has a spring constant of 150 N/m. In j
Feliz [49]

The potential energy of the spring is 6.75 J

The elastic potential energy stored in the spring is given by the equation:

E= \frac{1}{2} kx^2

where;

k is the spring constant

x is the compression/stretching of the string

In this problem, we have the spring as follows:

k = 150 N/m is the spring constant

x = 0.3 m is the compression

Substituting in the equation, we get

E=\frac{1}{2} (150) (0.3)^2

E=6.75J

Therefore. the elastic potential energy stored in the spring is 6.75J .

Learn more about potential energy here:

brainly.com/question/10770261

#SPJ4

6 0
1 year ago
A group of students decides to set up an experiment in which they will measure the specific heat of a small amount of metal. The
lesya692 [45]
I think the answer is C
7 0
3 years ago
A slit has a width of W1 = 4.4 × 10-6 m. When light with a wavelength of λ1 = 487 nm passes through this slit, the width of the
Vitek1552 [10]

Answer:

The width of the central bright fringe on the screen is observed to be unchanged is 4.48*10^{-6}m

Explanation:

To solve the problem it is necessary to apply the concepts related to interference from two sources. Destructive interference produces the dark fringes.  Dark fringes in the diffraction pattern of a single slit are found at angles θ for which

w sin\theta = m\lambda

Where,

w = width

\lambda =wavelength

m is an integer, m = 1, 2, 3...

We here know that as sin\theta as w are constant, then

\frac{w_1}{\lambda_1} = \frac{w_2}{\lambda_2}

We need to find w_2, then

w_2 = \frac{w_1}{\lambda_1}\lambda_2

Replacing with our values:

w_2 = \frac{4.4*10^{-6}}{487}496

w_2 = 4.48*10^{-6}m

Therefore the width of the central bright fringe on the screen is observed to be unchanged is 4.48*10^{-6}m

3 0
3 years ago
If a car accelerates from 0 to 10 m/s in 4 seconds, and the mass of the car is 1500 kg. What force is created by the car?​
Minchanka [31]

Answer:

PLS MARK BRAINLIEST

Explanation:

f=m (v- u)/t

u=0m/s

v=10m/s

t=4 secs

m=1500kg

f=1500(10-0)/4

f=3750N

5 0
3 years ago
Other questions:
  • A circut contains a 2 microfarads and a 20 microfarads capacitor connected in parallel. What is the total capacitance of the cir
    10·1 answer
  • When a pitcher throws a softball to a catcher, the vibration of the atoms that make up the softball is ____________ energy, whil
    14·1 answer
  • The alliance that was formed between Hitler and Mussolini was known as the _____________.
    15·1 answer
  • Dalton was one of the first scientists to experimentally prove that
    15·2 answers
  • The formula for Ohm’s law can be written: V equals <br><br> a. l x R<br> b. l/R<br> c. R/l
    15·1 answer
  • A child on a merry-go-round takes 3.9 s to go around once. What is his angular displacement during a 1.0 s time interval?
    9·1 answer
  • Atmospheric pressure is greater at the base of a mountain than at
    6·1 answer
  • A car is moving at high speed along a highway when the driver makes an emergency braking. The wheels become locked (stop rolling
    8·1 answer
  • A proud new Jaguar owner drives her car at a speed of 35 m/s into a corner. The coefficients of friction between the road and th
    14·1 answer
  • ​In Figure 4.24, a current of 0.3 A flows through the conductor CD, and a charge of 4C passes through a cross-section AB of the
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!