Answer:
Differences between freefall and weightlessness are as follows:
<h3>
<u>Freefall</u></h3>
- When a body falls only under the influence of gravity, it is called free fall.
- Freefall is not possible in absence of gravity.
- A body falling in a vacuum is an example of free fall.
<h3>
<u>Weightlessness</u></h3>
- Weightlessness is a condition at which the apparent weight of body becomes zero.
- Weightlessness is possible in absence of gravity.
- A man in a free falling lift is an example of weightlessness.
Hope this helps....
Good luck on your assignment....
Answer:
The final velocity of the race car is 27.14 m/s
Explanation:
Given;
initial velocity of the race car, u = 18.5 m/s
acceleration of the race car, a = 2.47 m/s²
distance covered by the race car, s = 79.78 m
Apply the following kinematic equation to determine the final velocity of the race car.
v² = u² + 2as
v² = (18.5)² + 2(2.47)(79.78)
v² = 736.363
v = √736.363
v = 27.14 m/s
Therefore, the final velocity of the racecar is 27.14 m/s
Answer:
The motion of a simple pendulum is very close to Simple Harmonic Motion (SHM). SHM results whenever a restoring force is proportional to the displacement, a relationship often known as Hooke's Law when applied to springs. Where F is the restoring force, k is the spring constant, and x is the displacement.
where θ is the angle the pendulum makes with the vertical. For small angles, sin(θ)∼θ, which would then lead to simple harmonic motion. For large angles, this approximation no longer holds, and the motion is not considered to be simple harmonic motion.
The answer is false. I know for a fact it is but i dont remember which ones.
The correct answer is A continúe moving with constant velocity